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Most large structural variants in cancer 
genomes can be detected without long reads

Zi-Ning Choo1,2,3,4, Julie M. Behr1,2,5, Aditya Deshpande1,2,5, Kevin Hadi1,2,4, 
Xiaotong Yao1,2,5, Huasong Tian1,2,6, Kaori Takai7, George Zakusilo7, 
Joel Rosiene    1,2, Arnaud Da Cruz Paula    8, Britta Weigelt    8, Jeremy Setton8, 
Nadeem Riaz    8, Simon N. Powell    8, Klaus Busam    8, 
Alexander N. Shoushtari8, Charlotte Ariyan8, Jorge Reis-Filho    8, 
Titia de Lange    7 & Marcin Imieliński    1,2,6,9 

Short-read sequencing is the workhorse of cancer genomics yet is thought 
to miss many structural variants (SVs), particularly large chromosomal 
alterations. To characterize missing SVs in short-read whole genomes, we 
analyzed ‘loose ends’—local violations of mass balance between adjacent 
DNA segments. In the landscape of loose ends across 1,330 high-purity 
cancer whole genomes, most large (>10-kb) clonal SVs were fully resolved 
by short reads in the 87% of the human genome where copy number could 
be reliably measured. Some loose ends represent neotelomeres, which 
we propose as a hallmark of the alternative lengthening of telomeres 
phenotype. These pan-cancer findings were confirmed by long-molecule 
profiles of 38 breast cancer and melanoma cases. Our results indicate that 
aberrant homologous recombination is unlikely to drive the majority of 
large cancer SVs. Furthermore, analysis of mass balance in short-read 
whole genome data provides a surprisingly complete picture of cancer 
chromosomal structure.

It is widely thought that short-read sequencing (SRS), which usually  
gene rates ≤150-bp reads, has limited sensitivity for mapping cancer  
structural variants (SVs; copy number (CN) alterations and rearrange-
ments) owing to the many homologous sequences in the human 
genome1. Indeed, more than two-thirds of the human genome consists 
of repetitive sequences2, including transposable elements, satellites 
and telomeres. SVs that rearrange long homologous repeats are likely 
to be missed by SRS.

Cancer whole-genome profiling efforts have been carried  
out almost exclusively with SRS3–5. Hence, little is known about the 
nature and burden of cancer SVs missed by SRS. While most cancer  
rearrangements detected with SRS have negligible breakend 

homology3,6–8, it is also unknown whether additional homologous 
recombination-driven mutational processes govern the evolution  
of rearrangements that are undetectable by SRS1,9.

Owing to mass balance, every copy of every segment in a genome 
must either have both a left and right neighbor or reside at a chromo-
some end. Because rearrangements appose previously distant segment 
ends to create new junctions, CN alterations and rearrangements are 
physically coupled in the cancer genome; most CN alterations involve  
a rearrangement, and many rearrangements are associated with a  
CN alteration4,10–13.

This coupling can be formalized as ‘junction balance constraints’ 
on a graph of genomic segments and their junctions4 (Fig. 1a).  
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processes that specifically rearrange repetitive sequences, includ-
ing aberrant homologous recombination, on cancer chromosomal 
structure.

Results
JaBbA v1 outperforms previous CN algorithms
We enhanced our previous JaBbA (v0.1; ref. 4) model with several  
methodological innovations to increase robustness to read depth  
waviness, improve algorithm convergence and enforce junction  
balance for allele-specific as well as total CN (Extended Data Fig. 1a–d 
and Methods). We also rigorously defined ‘CN-unmappable’ regions in 
the genome as positions surrounded by >90% repetitive bases in their 
1-kb vicinity. CN-unmappable regions accounted for 13% of the genome 
(across read lengths and genome builds), primarily comprised regions 
in or around telomeres and centromeres, and showed high variance 
in read depth across a panel of diploid normal samples (Methods and 

These constraints state that the CN of each genomic segment is equal 
to the CN of the junctions connecting to its left and right sides. Enforc-
ing these and other constraints within a statistical model enables the 
inference of balanced genome graphs and high-fidelity CN profiles 
from whole-genome SRS data, as shown with our previously published 
JaBbA (v0.1) algorithm4.

JaBbA’s statistical model allows for ‘loose ends’, which are ‘place-
holder’ adjacencies that allow the graph to satisfy junction balance 
while violating mass balance (Fig. 1a). Loose ends allow JaBbA to be 
robust to missing data but also represent hypotheses about unmapped 
junctions. We reasoned that analysis of loose ends in JaBbA could be 
used to test the completeness of cancer genome reconstructions from 
SRS and assess the nature of missing SVs in SRS profiles. In particular, 
we focused on large (>10-kb) SVs that give rise to clonal chromosomal 
alterations in cancers (referred to as SVs below for brevity, unless other-
wise qualified). Our goal was to understand the impact of mutational 
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Fig. 1 | Mass balance violations in cancer genomes. a, Schematic for integrated 
SV detection in JaBbA. Rearranged tumor haplotypes (top) comprise genomic 
segments connected by variant DNA junctions. These haplotypes produce read 
depth changes (scatterplot) and variant adjacencies (red edges) in SRS whole-
genome profiles (second track from top). JaBbA solves a mixed-integer program 
to identify the balanced genome graph that optimally explains the input (read 
depth and adjacencies; third track, right). Graph edges comprise reference or 
variant junctions and loose ends. Loose ends are placeholder edges that represent 
local violations of mass balance, which can occur at the breakends of junctions 
that are missing from the data (Methods). b, Precision and recall of SV breakend 
detection by JaBbA v1 in comparison to other state-of-the-art CN inference  
algorithms ( JaBbA v0.1, ASCAT v2.5.2 (ref. 14), FACETS v0.6.2 (ref. 17), Sequenza  
v3.0 (ref. 16) and TITAN v1.28 (ref. 15)) in a simulated dataset of 500 samples. 
Points show medians across all samples, and error bars show the IQR. c, Somatic 
loose end count (y axis) versus somatic junction breakend count (x axis)  
identified by JaBbA across a pan-cancer cohort of 1,330 high-purity matched 
tumor–normal tissue samples. The line shows x = y, and points correspond to 

breakend counts + 1 on a log10 scale. d, Number of junction breakends (top) and 
number of loose ends (bottom) by tumor type. Counts are plotted on a log scale 
after adding 1. AML, acute myeloid leukemia; KICH, kidney chromophobe; KIRC, 
kidney renal clear cell carcinoma; MALY, malignant lymphoma; LGG, low-grade 
glioma; PRAD, prostate adenocarcinoma; COAD, colon adenocarcinoma;  
UCEC, uterine corpus endometrial carcinoma; GBM, glioblastoma multiforme; 
BE, Barrett’s esophagus; LIHC, liver hepatocellular carcinoma; HNSC, head and 
neck squamous cell carcinoma; MELA, melanoma; LUAD, lung adenocarcinoma; 
STAD, stomach adenocarcinoma; BLCA, bladder carcinoma; LUSC, lung squamous 
cell carcinoma; SCLC, small cell lung cancer; ESAD, esophageal adenocarcinoma; 
BRCA, breast carcinoma; OV, ovarian adenocarcinoma; SARC, sarcoma.  
e, Fractions and examples of copy-neutral and copy-altered breakends associated 
with junctions and/or loose ends. Outer bar plots show the fractional contribution 
of each of the four breakend classes (e.g. copy-altered loose ends in the bottom 
right) to the total number of SV breakends detected by JaBbA. In each subpanel, 
the top track shows the balanced genome graph with plot elements as in a and the 
bottom track shows binned purity- and ploidy-transformed tumor read depth.
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Extended Data Fig. 2). We then limited analysis with the updated model 
( JaBbA v1) to the 87% of the human genome that was CN-mappable.

To assess the accuracy of JaBbA v1 for SV breakend detection in 
CN-mappable regions, we simulated 500 SRS whole-genome profiles 
comprising binned (1-kb) read depth, single nucleotide polymorphism  
(SNP) read counts and SV junctions (Extended Data Fig. 3a–d and  
Methods). In these simulations, JaBbA v1 loose ends showed sub-
stantially higher precision (median of 43% versus 5%) and recall 
(median of 70% versus 54%) than JaBbA v0.1 loose ends for missing 
CN-mappable SVs in high-purity (>0.5) cancer genomes (Extended 
Data Fig. 3e). JaBbA v1 also showed markedly improved accuracy for 
overall CN-mappable SV breakend inference relative to both JaBbA v0.1 
and four state-of-the-art cancer CN inference algorithms (ASCAT14, 
TITAN15, Sequenza16 and FACETS17) (Extended Data Fig. 3f), particularly 
for high-purity samples (median precision of 82% (68–91%) and median 
recall of 96% (93–100%), with the interquartile range (IQR) in parenthe-
ses) (Fig. 1b). JaBbA v1 also accurately estimated both total and allelic 
CN (Extended Data Fig. 3g), suggesting that JaBbA v1 is a state-of-the-art 
algorithm for the inference of CN and missing SVs in cancer genomes.

Pan-cancer landscape of loose ends
We next applied JaBbA v1 to 1,330 high-purity tumor and matched  
normal SRS profiles previously analyzed in Hadi et al.4 (see Methods 
for details), identifying 154,322 (clonal and somatic) junctions (median 
of 63 per tumor sample) and 48,835 somatic loose ends (median of  
21 per tumor sample). The somatic loose end burden per sample  
varied across a 200-fold range and was correlated (Spearman R2 = 0.68) 
with the junction burden (Fig. 1c,d).

Junction breakends may be reciprocal, meaning that they are 
near (within 10 kb) of another breakend with opposite orientation. 
Reciprocal breakends are usually copy-neutral (Fig. 1e, top left) which  
makes them difficult to detect through classic CN analyses. JaBbA’s 
bookkeeping of mass balance across segments and junctions enables  
sensitive detection of reciprocal and nonreciprocal SVs at both 
copy-neutral and copy-altered genomic regions (Extended Data Fig. 
4a–e). Across cancer, we found that most (85%) cancer junctions 
were both nonreciprocal and copy-altered (Fig. 1e, bottom left). Such  
junctions can arise from inherently nonreciprocal SVs, such as simple 
deletions, or begin as reciprocal translocations that undergo subse-
quent loss or gain of one of the derivative alleles (Extended Data Fig. 4f).  
Like somatic junction breakends, somatic loose ends were predomi-
nantly (92%) copy-altered (Fig. 1e, bottom right), although copy-neutral 
loose ends were also identified (Fig. 1e, top right). Taken together, these 
results suggest that loose ends arise by breakage and repair mutational 
processes similar to those generating junction breakends.

Loose ends harbor repetitive and foreign sequences
To study the sequence context around loose ends, we defined a canonical  
axis originating at the loose end with coordinates increasing along the 
DNA strand whose 3′ terminus matches the side of a segment on which a 
loose end is found, which we refer to as the loose end’s ‘forward’ strand 
(Fig. 2a). We next asked whether loose ends occurred preferentially  
at reference sequence repeats. Indeed, we found that unmappable 
bases were enriched near loose ends, most frequently LINE elements 
(Fig. 2b and Extended Data Fig. 5a). We next reasoned that some loose 
ends would result from the somatic fusion of mappable bases to  
unalignable sequences. Confirming this, we found a tumor-specific 
enrichment of repetitive and foreign sequences, including satellite  
and viral sequences, mated to reads on the forward (but not reverse) 
strand of somatic loose ends (Fig. 2c and Extended Data Fig. 5b).

To identify distinct classes of repetitive SVs missing from SRS 
whole-genome profiles, we systematically classified tumor-specific 
sequences fused to each somatic loose end through assembly or con-
sensus alignment (Fig. 2d and Methods). Overall, 55% of somatic loose 
ends showed evidence of tumor-specific fusion to a distal sequence. 

For over half of these (33% of somatic loose ends), the distal sequence 
aligned uniquely, indicating that these were fully mapped breakends 
missed by the initial junction caller (Fig. 2e) (SvAbA18). In 23% of somatic 
loose ends (3% of detected breakends), the distal sequence was repeti-
tive or foreign and could not be unambiguously placed on any reference 
(ambiguously mapped breakends; Fig. 2e). Finally, 45% of somatic loose 
ends (6% of detected breakends) did not map to any distal location (par-
tially mapped breakends; Fig. 2e). Notably, partially mapped breakends 
were enriched in boundaries of large (>1-Mb) CN-unmappable regions 
(odds ratio (OR) = 3.8; P < 2 × 10−16) (Extended Data Fig. 5c), indicating 
that some represented CN changes shifted away from a CN-unmappable 
SV breakend (for example, centromeric breakends causing arm-level 
chromosomal changes).

Combining fully mapped breakends across both loose ends  
and junctions indicated that 91% of JaBbA v1 breakends could  
be uniquely mapped. Notably, the fraction of partially or ambigu-
ously mapped breakends did not vary substantially across cancer  
types (Extended Data Fig. 5d; range of 5–33%) or established cancer 
drivers (Extended Data Fig. 5e; range of 0–38%), although we observed 
tumor types (for example, acute myeloid leukemia) and cancer  
genes (SMARCB1, TSC2 and FGFR3) with higher (>25%) fractional  
burdens. Given the estimated recall of JaBbA v1 (~96%), these results 
suggest that 87% of cancer SVs in the 87% of the genome that is 
CN-mappable can be fully resolved by SRS.

Long-molecule validation
To orthogonally assess these SRS-derived estimates of missing somatic 
SVs, we profiled the whole genomes of 11 melanoma (n = 10) and breast 
cancer (n = 1) tumor samples and their matched normal tissues with 
both SRS and Oxford Nanopore Technologies long-read sequencing 
(LRS; median read N50 of 11 kb; median coverage of 73× and 32× for 
tumor and normal samples, respectively). After calling large (>10-kb) 
somatic SVs in CN-mappable regions (Methods), we found a strong over-
lap (87%, 7,258 breakends) between LRS and SRS breakends, including 
77% overlap with fully mapped SRS breakends (Fig. 2f). The majority of 
junction calls identified by either platform had local read depth changes 
that were consistent with breakend topology; reciprocal breakends 
were copy-neutral, whereas nonreciprocal breakends showed a CN drop 
along their forward strand (Extended Data Fig. 6a). This analysis along 
with manual inspection of long and short read support at inidivudal 
junctions (Extended Data Fig. 6b) suggested that both SRS-only and 
LRS-only junctions comprise largely true positives; combining SRS and 
LRS breakend counts suggests that SRS missed ~12% of breakends. This 
result is consistent with our simulation-based estimate of recall (Fig. 1b 
and Extended Data Fig. 3f). Notably, we found a similar proportion of 
reciprocal and non-reciprocal breakends among those detected and 
missed by SRS (Fig. 2f), indicating that reciprocal and copy-neutral 
breakends do not comprise the bulk of missed structural variation in 
cancer genomes. These results confirm our SRS findings that most 
cancer SVs are nonreciprocal and copy-altered (Fig. 1e).

We next asked whether LRS improved SV event detection, which 
relies on the recognition of high-order patterns across multiple junc-
tions3,4. Although LRS did not help identify many additional simple or 
complex events relative to SRS (Fig. 2g), LRS junctions also resolved 
breakends at complex SVs found by SRS, including for chromothripsis, 
pyrgo, rigma and templated insertion chains3,4. The incorporation of 
LRS junctions enabled more complete haplotype reconstruction at 
loci where SRS found loose ends (Fig. 2h).

As additional validation of our results, we analyzed 27 high-purity 
(purity of >0.5) breast cancer and matched normal samples with both 
SRS and synthetic LRS (sLRS) whole-genome profiles (10x Genomics 
linked reads, median N50 molecule length of 23 kb, median coverage 
of 173× and 98× in tumor and normal samples, respectively; Methods)19. 
Similar to LRS, most sLRS SV calls (Methods) overlapped with SRS break-
ends, showed concordant patterns of reciprocality and CN change, and 
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yielded similar complex SV calls in sLRS junction-augmented genome 
graphs (Extended Data Fig. 6c–e). These breast cancer and melanoma 
LRS and sLRS results are consistent with our pan-cancer finding that 
SRS captures most large cancer SVs in CN-mappable regions.

Loose ends reveal neotelomeres
We next sought to investigate specific mutational processes engen-
dering loose ends. We observed that a fraction (4.8%) of ambiguously 
mapped loose ends (0.01% of all breakends) were fused to telomere 
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comprise junction breakends and loose ends in the JaBbA v1 genome graph. 
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repeats, as evidenced by telomere repeat-positive sequences mated 
to reads on the positive loose end strand (Fig. 3a). We refer to these 
breakends as telomere repeat-positive loose ends and surmised that 
they might represent neotelomeres, telomere-stabilized chromosome 
ends at previously interstitial genomic loci.

Telomere repeat-positive mates were found on the forward strand 
of telomere repeat-positive loose ends, but not on the reverse strand 
or in matched normal samples (Fig. 3a), indicating that these were 
neither telomere insertions20,21 nor constitutional neotelomeres22,23. 
Deeper analysis of telomere repeats at loose ends revealed strong 
strand bias, with loose ends harboring either G-rich (GRTR) or C-rich 

(CRTR) repeats but not both (Fig. 3b). The GRTR pattern is consistent  
with a neotelomere, whereas the CRTR pattern is consistent with  
the fusion of an interstitial sequence to a native chromosome end  
(Fig. 3c, right). The predominance of the GRTR pattern among  
telomere repeat-positive loose ends, in combination with the  
tumor specificity and forward strand bias, suggested that somatic 
neotelomeres are frequent in cancer.

To better assess sequences fused to GRTR+ loose ends, we pro-
filed three cancer cell lines (U2OS, NCI-H526 and NCI-H838) with sLRS  
(Methods). We found telomere repeat-positive linked reads within 
5 kb of 26 of 31 GRTR+ loose ends (83.8%) (Methods). Telomere 
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repeat-positive linked reads were found up to 50 kb upstream of 
each GRTR+ loose end, indicating power to map distal fusion part-
ners at these loci (Fig. 3d). In contrast to sLRS junctions and telomere 
repeat-negative loose ends, linked reads at GRTR+ loose ends rarely 
(<1.5%) mapped to distant chromosomal locations, consistent with new 
chromosome ends (Fig. 3e). Quantitative analysis of repeat counts at 
linked reads mapping to these loci (Methods) revealed 2.4 ± 1.3 (s.d.) 
kb of telomere repeats per GRTR+ locus, in line with previous estimates 
of native cancer telomere lengths20 (Fig. 3f).

To confirm that GRTR+ loose ends were indeed chromosome ends, 
we performed Southern blot analysis on restriction-digested U2OS  
and control (Saos-2) genomic DNA using radiolabeled probes against 
two U2OS GRTR+ loose ends. At each locus (Fig. 3g and Extended  
Data Fig. 7a), we found a small (<5-kb) band consistent with an unaltered 
reference allele and a longer U2OS-specific diffuse band consistent 
with a neotelomere (Fig. 3h and Extended Data Fig. 7b). To further 
investigate the nature of these nonreference bands, we subjected  
intact genomic DNA to exonuclease (Bal-31) digestion24. The 
U2OS-specific (but not wild-type) bands disappeared with prolonged 
exonuclease exposure (Fig. 3i and Extended Data Fig. 7c), consistent 
with their origin at a chromosome end. These results establish these 
two U2OS GRTR+ loose ends as bona fide neotelomeres.

We next hypothesized that telomerase-mediated healing of 
double-stranded DNA breaks might give rise to neotelomeres (Fig. 3c,  
left)25. However, neotelomeres were not found more frequently in 
tumors that amplified TERT or expressed it at high levels (CN > 2 
ploidy, expression z score > 2). Instead, neotelomeres were enriched in  
samples with low or negligible TERT expression (reads per kilobase per  
million mapped reads (RPKM) = 0) (Fig. 3j). Tumors that lack telome-
rase may activate the alternative lengthening of telomeres (ALT) 
pathway, a break-induced replication (BIR) process (Fig. 3c, middle) 
suppressed by ATRX26. Indeed, we found that neotelomeres were sig-
nificantly more common in tumors harboring truncating mutations 
in ATRX than in ATRX-wild-type cancers (Fig. 3j). Furthermore, we 
found that several ALT-associated cancers, including sarcomas (18%; 
OR = 6.47; P = 1.95 × 10−5) and low-grade gliomas (12.3%; OR = 3.92; 
P = 4.1 × 10−3), had the highest rate of GRTR+ loose ends relative to other 
tumor types (Fig. 3k). These results indicate that GRTR+ loose ends and 
neotelomeres may be a new hallmark of the ALT phenotype.

Loose ends link viral integration to amplicon formation
Surveying additional mutational processes engendering loose ends, 
we found ambiguously mapped somatic breakends fused to viral 
sequences, indicating junctional viral integration at large SVs (Extended 
Data Fig. 8a). While the integration of viral sequences into otherwise 
unrearranged loci (Extended Data Fig. 8a, left) has been widely studied 
in cancer27,28, the role of viruses in causing chromosomal-scale SVs 
(Extended Data Fig. 8a, right) has been a topic of only recent inter-
est29–31. Somatic loose ends harboring tumor-specific viral sequence 
(viral loose ends) were rare overall (~1% of cancers), although enriched 
in cancer types with viral etiology in our dataset4: cervical squamous 
cell carcinoma (CESC; 32%), liver hepatocellular carcinoma (LIHC; 13%) 
and head and neck squamous cell carcinoma (HNSC; 7%) (Extended 
Data Fig. 8b). Consistent with previously characterized viral integration 
patterns, we found viral loose ends fused to oncogenic HPV sequences 
in CESC and HNSC and hepatitis B virus (HBV) sequences in LIHC27.

Breakends initiating complex amplifications are themselves likely 
to be amplified4. Viral loose ends were frequently amplified (CN > 7) 
relative to nonviral loose ends (P = 1.7 × 10−4; OR = 8.66) (Extended 
Data Fig. 8c), and HPV-16 loose ends had higher mean CN than either 
HPV-18 or HBV loose ends (P = 8.2 × 10−3 and P = 2.2 × 10−5, respectively, 
Extended Data Fig. 8d). Among these was an HNSC tumor (TCGA-4077) 
locus where two high-copy viral loose ends on chromosome 14 flanking 
an intronic region of the RAD51B gene were fused to opposite ends of 
the HPV-16 genome (Extended Data Fig. 8e). This locus is consistent 

with an ecDNA where HPV-16 is fused between two ends of a long-range 
duplication junction. This and other similar amplicon structures with 
high-copy viral loose ends (Extended Data Fig. 8e,f) point to HPV-16 
integration as an initiating event in SV evolution, rather than a viral 
insertion into an existing ecDNA.

Crossover between parental homologs is rare in cancer
We next asked whether loose ends could be used to assess the con-
tribution of aberrant homologous recombination to cancer rear-
rangements. Homologous recombination-driven crossover between 
parental homologs (allelic homologous recombination, or AHR) is a 
hallmark of meiosis32. Although AHR has been observed in somatic 
cells33, its contribution to cancer structural variation is unclear. AHR 
crossovers lead to segmental uniparental disomy (UPD) in approxi-
mately half of segregants (Fig. 4a, left). In balanced allelic graphs, 
AHR crossovers manifest as reciprocal pairs of partially mapped and 
copy-neutral loose ends on distinct parental homologs (Fig. 4b, left, 
and Methods). Notably, this form of UPD (AHR-UPD) is mechanisti-
cally distinct from UPD arising through progressive acquisition of 
nonhomologous recombination (for example, end joining)-driven 
rearrangements and/or chromosomal missegregation (progressive 
UPD, or P-UPD; Fig. 4a,b, right).

In our simulations (Extended Data Fig. 3a and Methods), JaBbA v1 
distinguished AHR-UPD from P-UPD with both high precision (84.4%) 
and high recall (87.4%), substantially outperforming previous allelic  
CN algorithms (with precision ranging from 11–44%) (Extended 
Data Fig. 9a,b). Analysis of segment width distributions showed that 
AHR-UPD was distinct from P-UPD, whose distribution closely mirrored 
that of other forms of loss of heterozygosity (LOH; Fig. 4c). Likewise, 
AHR-UPD events were large (median width of 19.8 Mb), unlike P-UPD 
events (median width of 0.69 Mb) and other forms of LOH (median 
width of 0.62 Mb), which were focal (Fig. 4c).

Although AHR was found in many cancers (24% of all tumors) 
and specific tumor types (for example, 55% of cases of malignant  
lymphoma) (Extended Data Fig. 9c), it contributed to a minority of  
UPD events, most of which were progressive (31% P-UPD versus 1% 
AHR-UPD by total width) (Fig. 4d). Overall, a small minority of detected 
cancer breakends (<1%) arose by AHR (including non-UPD LOH). On the 
basis of an approximate rate of 0.5 AHR events per tumor and 100 cell 
divisions in the average ancestral cancer clone, and barring effects of 
selection, we estimate a rate of 10−12 AHR events per base pair per cell 
division. This is four orders of magnitude lower than the rate of meiotic 
recombination in human gametes, suggesting that AHR events are 
infrequent in somatic evolution34.

Germline but not somatic loose ends are consistent with NAHR
A second mechanism by which aberrant homologous recombination 
can cause large SVs is through non-AHR (NAHR), or crossover between 
long (>500-bp) stretches of nearly identical genomic sequences at 
distant haploid coordinates32,35,36 (Fig. 4e). We reasoned that such 
SVs would engender pairs of loose ends with substantial (>500-bp) 
strand-specific sequence homology in their vicinity (Extended Data 
Fig. 10a and Methods)36. Indeed, the burden of homologous loose end 
pairs accurately reflected the true NAHR burden across a compendium 
of simulated SRS tumor whole-genome profiles (Extended Data Fig. 3a) 
harboring a wide range of NAHR SV fractions (1–10%) (Fig. 4f).

Analyzing breakend pairs within each tumor, we found that 
approximately 20% of germline loose ends (Methods) were consist-
ent with NAHR in contrast to only about 0.5% of somatic loose ends 
(and 0.06% of all somatic SV breakends) (Fig. 4g). These findings are 
consistent with prior observations about the substantial role of NAHR 
in germline variation8,37. The somatic NAHR burden did not vary by 
tumor type nor was it lower in tumors harboring biallelic pathogenic 
mutations in DNA repair genes, including frequently mutated homolo-
gous recombination pathway mediators (BRCA1, BRCA2, PALB2 and 
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RAD51C). In summary, given a mean of 0.16 somatic NAHR events per 
tumor occurring across an estimated eligible territory of 2.8 × 108 
homologous position pairs, we estimate a somatic NAHR density of 
6 × 10−10 events per cancer genome bp2 (Methods).

To validate these SRS findings in long-molecule whole-genome 
profiles, we analyzed 38 melanoma and breast cancer cases profiled 
with SRS and either LRS or sLRS. Both LRS and sLRS data confirmed 
our SRS findings that somatic NAHR SVs were rare (<1% of LRS junc-
tion calls) while germline NAHR SV events were common (Fig. 4h and 
Extended Data Fig. 10b–e). Notably, we did not identify any reciprocal 
somatic NAHR rearrangements, a class of SVs that may potentially be 
missed through analysis of SRS loose ends.

Extrapolating beyond the CN-mappable genome
The analyses described above were limited to the 87% of the genome 
where CN could be reliably measured with SRS (Fig. 5a). The remain-
ing 13% that is CN-unmappable comprises largely regions in or  
around telomeres and centromeres (Extended Data Fig. 2b). To assess 
the burden of large SVs here, we applied two simplifying assumptions: 
(1) the rate of NAHR between any two regions in the genome is pro-
portional to the number of position pairs with substantial homology 
(>500 bp with >96% homology) between these regions and (2) the  
density of non-NAHR-driven rearrangements is uniform across  
the genome, and hence the burden of non-NAHR breakends in a  
given region is proportional to its width. Both of these assertions 
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hold true, to a first approximation, across the CN-mappable genome 
(Extended Data Fig. 10f,g).

We used the latest telomere-to-telomere build (T2T CHM13; 
ref. 38) to estimate the number of homologous position pairs out-
side CN-mappable regions (Fig. 5b). We found that CN-unmappable 
sequences harbored ~100-fold-greater homologous position pairs 
(2.7 × 1010 bp2) than the CN-mappable portion of the T2T CHM13 genome 
build (2.8 × 108 bp2) (Fig. 5c). This suggested that CN-unmappable 
regions harbor ~100 times as many NAHR SVs as CN-mappable regions. 
Integrating these measurements (Fig. 5a–c and Methods), we estimate 
that CN-mappable regions harbor 83% of all large SV cancer breakends, 
most of which are detected by SRS (Fig. 5d). Furthermore, even when 
CN-unmappable regions are taken into account, we estimate that 
homologous recombination contributes to a small proportion (~5%) 
of large cancer SV breakends (Fig. 5d).

Discussion
As cancer whole-genome SRS efforts scale and long-molecule genome 
profiling technologies mature, it is important to understand the  
limitations of SRS, particularly for the detection of chromosomal  
alterations. The conventional wisdom in the field has been that SRS 
misses most SVs owing to the prevalence of repeats in the human  
genome and the unclear contribution of NAHR to somatic structural 
genomic evolution8,37,39,40. Contrary to this prevailing intuition, we find 
that SRS detects and maps most large (>10-kb) somatic SV breakends in 
CN-mappable genomic regions. Intuitively, this is because most cancer 

chromosomal alterations are unbalanced and nonreciprocal (Fig. 1e), 
thus creating a CN footprint that SRS, when guided by mass balance 
approaches such as JaBbA v1, can reliably detect (Fig. 1b).

Our SRS analyses suggest that long-molecule technologies (for 
example, LRS and sLRS) will only modestly improve the detection 
of chromosomal breakends. We confirm this by jointly profiling the 
whole genomes of cancer samples and their matched normal samples 
with deep long-molecule sequencing (LRS or sLRS) and SRS. Given 
our findings, what additional insight into SVs can long-molecule tech-
nologies hope to offer? First, long molecules will enable the phasing of 
junctions to nearby somatic and germline variants. Resolution of the 
multi-junction haplotype structure at complex SVs may substantially 
inform their mechanistic interpretation and functional annotation, as 
in a recent study from our group19. Second, long molecules substantially 
increase the sensitivity for smaller (≤10-kb) somatic SVs, which were 
excluded from our analyses41–43. Future long-molecule studies will  
be needed to uncover the mutational processes and selective pres-
sures driving the evolution of these smaller SV classes, including retro-
transposition events.

Our study provides some of the most definitive evidence  
showing that NAHR drives a small proportion (<1%) of chromosomal 
alterations, at least in CN-mappable genomic regions. Our NAHR 
estimates in the remaining 13% (Fig. 5) of the genome assume that 
CN-mappable and CN-unmappable regions are subject to similar 
mutational processes. This assertion may require re-evaluation  
given recent studies investigating centromeric mutational processes44. 
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Other settings where homologous recombination has been invoked, 
such as in the recombination of extrachromosomal DNA (ecDNA)45,46, 
may similarly represent unique chromatin environments that are  
distinct from the remainder of the genome where homologous  
recombination rarely creates large SVs.

Practically, our study establishes JaBbA v1 as a state-of-the-art 
algorithm for cancer CN analysis, improving upon JaBbA v0.1 as well 
as classic ‘change point’-based CN callers (Fig. 1b). The use of mass 
balance in the JaBbA model provides both superior performance  
in detecting somatic breakends and a lens into missing cancer SVs.  
Our study supports the use of JaBbA v1 and, more broadly, SRS in  
clinical cancer cytogenetics, where whole-genome SRS is poised to 
become routine in an era of plummeting sequencing costs47,48.
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