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Abstract Attachment of telomeres to the nuclear enve-
lope (NE) and their clustering in a chromosomal bouquet
during meiotic prophase I is an evolutionary conserved
event that promotes chromosome pairing and recombina-
tion. In fission yeast, bouquet formation fails when the
telomeric protein Rap1 is absent or when the telomeric
protein Taz1 fails to recruit Rap1 to telomeres. The
mammalian Rap1 orthologue is a component of the
shelterin complex and localises to telomeres through an
interaction with a Taz1-like telomeric DNA binding
factor, TRF2. Here, we investigated the role of mamma-
lian Rap1 in meiotic telomere attachment and clustering
by analysing spermatogenesis in Rap1-deficient mice.
The results establish that the meiotic three-dimensional
nuclear architecture and recombination are not affected
by the absence of Rap1. Furthermore, Rap1-deficient
meiotic telomeres assemble the SUN1 nuclear membrane
protein, attach to the NE, and undergo bouquet formation
indistinguishable from the wild-type setting. Thus, the

role of Rap1 in meiosis is not conserved between fission
yeast and mammals, suggesting that mammals have
alternative modes for connecting telomeres to SUN
proteins on the meiotic nuclear envelope.

Introduction

Telomeres are key players in meiosis, in particular, in the
chromosome pairing and recombinogenic processes that
take place during the first meiotic prophase (for reviews see
(Scherthan 2006; Zickler and Kleckner 1998). Meiosis is a
succession of two specialised cell divisions that reduces the
diploid chromosome number to the haploid complement. At
the onset of meiotic prophase I, telomeres attach to the
nuclear envelope (NE) and undergo NE-bound mobility
(Alsheimer 2009; Scherthan 2007). In yeasts and worms,
meiotic telomeres connect to the cytoskeleton and perinu-
clear motor proteins through meiosis-specific telomere
protein complexes connected to SUN/KASH-domain nu-
clear transmembrane protein complexes (Chikashige et al.
2006; Conrad et al. 2007; Penkner et al. 2009; Sato et al.
2009; reviewed in Hiraoka and Dernburg 2009). In
mammals, there are two such SUN domain proteins,
SUN1 and SUN2. SUN1 and SUN2 localise to telomere
attachment sites at the NE (Schmitt et al. 2007), and
deletion of SUN1 prevents telomere attachment to the NE
and impairs homologue pairing and synapsis (Ding et al.
2007). In mammals, the telomeres attach to the NE during
the preleptotene/leptotene stage, after which they move and
transiently cluster adjacent to the centrosome. The resulting
chromosome “bouquet” is thought to promote homologous
chromosome pairing, meiotic recombination and possibly
metaphase plate alignment (Scherthan 2006; Tomita and
Cooper 2007).
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In the synaptic meiosis of budding yeast, the duplex
telomere repeats are directly bound by scRap1 (Klein et
al. 1992) and telomere attachment and mobility involves
actin (Koszul et al. 2008; Trelles-Sticken et al. 2005), the
meiotic telomere protein Ndj1 (Conrad et al. 1997, 2007;
Rockmill and Roeder 1998; Scherthan et al. 2007; Trelles-
Sticken et al. 2000; Wanat et al. 2008), and SUN domain
proteins like MSP3 (Conrad et al. 2007, 2008; Wanat et
al. 2008).

In the asynaptic meiosis of Schizosaccharomyces pombe,
bouquet formation is absolutely required for homologue
pairing and for recombination (reviewed by Chikashige et
al. 2007) and depends on the presence of the telomeric
repeat-binding protein Taz1 (Cooper et al. 1997, 1998;
Nimmo et al. 1998). S. pombe telomeres connect via Taz1-
spRap1 to the SUN domain proteins Sad1–Kms1 of the NE
to reach the microtubule cytoskeleton and cytoplasmic
dynein that drives telomere clustering and telomere-led
horsetail movement of the prophase I nucleus (for review,
see Chikashige et al. 2007).

Mammalian telomeres contain the shelterin complex
which protects telomeres from the deoxyribonucleic acid
(DNA) damage response and regulates telomere mainte-
nance by telomerase (reviewed in Palm and de Lange
2008). Shelterin contains two double-stranded TTAGGG
repeat binding proteins, TRF1 and TRF2, that are ortho-
logues of S. pombe Taz1. In addition, shelterin contains a
TRF2 binding factor, Rap1, that is distantly related to the
Rap1 proteins of budding and fission yeast. Most shelterin
components, including the Taz1 orthologues, are essential,
thwarting efforts to understand how the mammalian
telomeric complex contributes to meiosis. However, we
recently found that Rap1 is not required for the essential
aspects of telomere protection, and Rap1 null mice are
viable and fertile (Martinez et al. 2010; Sfeir et al. 2010).
The main phenotype of telomeres lacking Rap1 is their
greater tendency to undergo homologous recombination
(HR; Sfeir et al. 2010).

Meiotic mammalian telomeres also contain shelterin
(Scherthan et al. 2000b) and abut the NE in attachment
plates or plaques (see, Liebe et al. 2004). Heterozygosity
for the shelterin component TRF1 and disruption of the
ATM kinase, the SMC1ß cohesin, or the ATM kinase
target H2AX alter telomere dynamics but not their
attachment (reviewed by Scherthan 2007). As in other
organisms, the telomere–NE association depends on the
SUN domain proteins, SUN1 (Ding et al. 2007; Schmitt et
al. 2007) and possibly SUN2, since partially redundant
roles for SUN1 and SUN2 have been reported in somatic
cells (see Haque et al. 2010). Here, we made use of the
Rap1-deficient mouse (Sfeir et al. 2010) to determine the
contribution of Rap1 to telomere dynamics and recombi-
nation in male prophase I.

Materials and methods

Mice

Rap1 knockout mice were produced by a conditional
knockout strategy of exon2 (Rap1Δex2/Δex2; Sfeir et al.
2010). Rap1Δex2/Δex2-targeted mice were maintained in a
C57BL/6 J background and are denoted Rap1Δ/Δ in this
manuscript. Testes were recovered as described previously
(Scherthan et al. 2000a).

Western analysis

Protein extracts were prepared isolated from testes of 4-
week-old male mice by homogenisation in extraction buffer
[50 mM Tris–HCl at pH 7.4, 1% Triton X-100, 0.1% SDS,
400 mM NaCl, 1 mM ethylenediaminetetraacetic acid
(EDTA), 1 mM dithiothreitol (DTT), supplemented with
protease inhibitors]. Bradford assay was used to determine
the concentration of proteins. Then 10 μg of lysate was
separated on an 8% SDS-PAGE gel. After immunoblotting,
membranes were probed with antibodies raised against
GST-mTRF2 (1254) and GST-mRAP1 (1252).

Testicular preparations, detergent spreading and FISH

Testicular preparations, surface spreading, immunostaining
as well as telomere and centromere fluorescence in situ
hybridization (FISH) for bouquet stage investigation were
carried out as described (Liebe et al. 2006).

Antisera and immunofluorescence

The following affinity-purified antibodies were used in the
immunostaining experiments: TRF1, rabbit anti-mouse-
TRF1 antisera #1449 (Sfeir et al. 2009); TRF2, rabbit
anti-TRF2 #1254 (Celli and de Lange 2005); RAP1, rabbit
anti-mouse-Rap1 antiserum (#1252; Celli and de Lange
2005) were used to detect shelterin components. Rabbit
polyclonal anti-Mre11 (1:200, Novus Biologicals, Littleton,
CO), mouse monoclonal anti-γ-H2AX (1:500, Millipore,
Schwalbach), goat anti-Ku70 (sc-1486, 1:25, Santa Cruz,
Heidelberg). Guinea pig anti-SUN1 was a kind gift of M.
Alsheimer, Univ. of Würzburg, Germany. A monoclonal
anti-SYCP3 antibody (Adelfalk et al. 2009) was used to
detect axial cores and complete SCs (Lammers et al. 1994).
All antisera were diluted in phosphate buffered saline
(PBS)/0.1%Tween 20/0.2% BSA/0.1% gelatin (PBTG).
All antibodies were tested in individual staining reactions
for their specificity and performance. Controls without
primary antibodies all were negative (not shown).

Immunostaining was performed as described earlier
(Adelfalk et al. 2009; Scherthan et al. 2000b). After
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incubation with the primary antibodies at 4°C overnight,
preparations were rinsed 3×3 min with PBS/Tween 20 and
incubated for 30 min at 37°C with a goat anti-rabbit-Cy3
antibody (Dianova, Hamburg, diluted 1/1000). Mouse
mmunoglobulins G were detected with anti-mouse-FITC
(Dianova, 1/1000). SUN1 was detected using anti-guinea
pig Cy3 (Dianova), Ku70 abs were detected with donkey
anti-goat Cy2 antibodies (Dianova, 1/500). Triple labelling
was achieved using rabbit-anti-mRPA1 and guinea-pig-anti-
SUN1 (Schmitt et al. 2007) and mouse anti-SYCP3
antibody as above, with SYCP3 being detected by anti-
mouse-Cy5-labelled secondary antibodies (Dianova,
1/500). Finally, preparations were mounted in antifade
solution (Vectashield, Vector Labs) containing 0.5 μg/ml
DAPI (Sigma) to reveal nuclear DNA. In mouse testicular
suspension preparations, the meiotic prophase stage-specific
distribution of SYCP3 proteins and/or DAPI-bright hetero-
chromatin clusters (Scherthan et al. 1996) was utilised to
identify spermatocytes at various stages of prophase I.

Microscopic evaluation

A Zeiss Axioplan 2 epifluorescence microscope (Carl
Zeiss, Oberkochen) equipped with single-band pass filters
for excitation of green, red and blue fluorescence (Chroma
Technologies, Bellows Falls) and 10×, 40×, 63× and 100×
plan-neofluoar lenses was used for epifluorescence micros-
copy. Three-dimensional evaluation of immunostained
nuclei was performed in some experiments by carefully
focusing through the nuclei using a 100× plan-neofluoar
lens and the motorized Z drive of the axioplan microscope.
Using the ISIS fluorescence image analysis system (Meta-
Systems), digital black-and-white images were recorded
with a CCD camera and merged to RGB images.

Results and discussion

Presence of shelterin on Rap1Δ/Δ meiotic telomeres

We studied the impact of Rap1 deficiency on telomere
dynamics in prophase of meiosis I in the Rap1 (Terf2ip)
knockout mouse (Rap1Δex2/Δex2; hereafter denoted
Rap1Δ/Δ; Sfeir et al. 2010). This mouse lacks the second
exon of the Rap1 gene and consequently lacks functional
Rap1 protein in somatic cells. Rap1 was not detectable in
immunoblots on testicular extracts of Rap1Δ/Δ mice
(Fig. 1), and indirect immunofluorescence on detergent-
spread spermatocytes showed loss of Rap1 from meiotic
telomeres (Fig. 2a).

Next, we queried the Rap1Δ/Δ spermatocytes for the
presence of TRF1, TRF2 and the axial core protein SYCP3
(SCP3; Lammers et al. 1994). Compared to the Rap1-

proficient control, the TRF1 and TRF2 signals at the ends
of meiotic chromosome cores of leptotene and zygotene
spermatocytes (not shown) and SCs (Fig. 2b, c) were
unaltered in the Rap1 knockout testis. Pachytene/diplotene
nuclei displayed particularly strong TRF1 and TRF2 signals
at SCs ends (Fig. 2), which agrees with previous observa-
tions (Scherthan et al. 2000b). Enumeration of >400 SC
ends in at least 10 well-spread pachytene nuclei of wild-
type and three knockout mice revealed a >99% association
of chromosome ends with the respective telomere protein
(Fig. 2c), indicating that the absence of Rap1 does not
disturb the telomere location of shelterin in meiocytes.

Rap1-deficient telomeres attach to the NE

In the mouse, telomere attachment to the NE occurs during
preleptotene and precedes homology search and pairing
(Scherthan et al. 1996). To investigate telomere dynamics
and their re-localisation to the nuclear periphery during the
course of meiotic prophase in the absence of Rap1, we used
FISH probes to detect telomeres and pericentric major
satellite DNA in structurally preserved nuclei of testicular
suspensions. TTAGGG telomere FISH signal patterns of
testicular suspension nuclei showed a wild-type pattern of
distribution, reminiscent of previous investigations (see
Liebe et al. 2006). Three dimensionally preserved prophase
I spermatocyte nuclei (>1,000/mouse) were inspected for
disruption of peripheral telomere location, which revealed a
wild-type-like peripheral telomere location (Fig. 3) in
controls and three knockout mice, indicating that Rap1 is
not required for telomere/NE attachment.

At the onset of prophase I, telomeres undergo a dynamic
redistribution that involves their fleeting clustering during
early zygotene (bouquet topology; Scherthan et al. 1996).
Bouquet spermatocytes, which can be assayed through
centromere/telomere FISH in testicular suspensions, are
rarely encountered (~0.3%) in mouse meiosis (Liebe et al.
2006). When we determined the frequency of bouquet

Fig. 1 Western blot analysis for
Rap1 (1252) and TRF2 (1254)
in testis extracts of Rap1Δ/+
and Rap1Δ/Δ mice. Absence of
RAP1 protein is noted in testes
of Rap1Δ/Δ mice. TRF2
expression is not affected and
serves as a loading control.
Bands with asterisks are
unspecific background of the
antibody
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spermatocytes in testicular suspensions of Rap1Δ/Δ and
control mice, we noted similar frequencies in Rap1Δ/Δ

(0.29%, n=1,056) and wild-type (0.34%, n = 1,164)
spermatocytes, which agree with previous reports (Liebe
et al. 2006). The difference between the Rap1-proficient
and Rap-1-deficient values was not statistically significant
(p>0.05; Fisher’s test).

These results establish that Rap1 is dispensable for
telomere attachment, dynamic redistribution and clustering
in mouse meiosis and contrast with the situation in

S. pombe meiosis, where Rap1 is required for bouquet
formation (Chikashige and Hiraoka 2001; Kanoh and
Ishikawa 2001).

SUN1 associates with Rap1-deficient telomeres

In S. pombe meiosis, Rap1 mediates telomere attachment
and bouquet formation through a Bqt1- and Bqt2-
dependent connection with the Sad1–Kms1 protein com-
plex in the NE (reviewed by Chikashige et al. 2007). In
mammalian meiosis, telomeres also attach to the NE
through an interaction with the trans-membrane SUN
domain proteins SUN1 and SUN2, which concentrate at
telomeres during prophase I (Ding et al. 2007; Schmitt et al.
2007).

To determine whether the absence of Rap1 alters
telomere association with the SUN trans-membrane com-
plex, we performed IF for SUN1 (Schmitt et al. 2007) on
Rap1Δ/Δ spermatocytes in combination with detection of
SYCP3 and/or Rap1. The results indicated a wild-type
SUN1 distribution at all telomeres (SC ends, n ≥ 400 ends/
mouse) in spread pachytene nuclei (Fig. 2). As expected,
triple staining of SCP3, SUN1 and Rap11 showed this
combination of proteins at wild-type telomeres, but not in
the Rap1-deficient testis (Fig. 2b).

In budding yeast, telomere maintenance and perinuclear
telomere positioning involves Hdf1/Hdf2 (Ku70/Ku80; see
Gasser 2000) which are abundant nuclear DSB-binding
proteins important for nonhomologous end joining (NHEJ)
pathway of DSB repair. During the leptotene/zygotene

Fig. 3 Three-dimensional telomere distribution in Rap1+/+ and
Rap1Δ/Δ spermatocytes using telomere FISH signals (green,
TTAGGG7-FITC) and pericentromeric major satellite DNA (red,
Cy3). Localization at the nuclear periphery is noted in leptotene–
pachytene spermatocyte nuclei of both genotypes. Bottom, top and
equatorial focal planes are indicated in this pachytene nucleus. Most
signals are seen in the bottom focal plane, as the nucleus at the glass
surface is slightly flattened and displays a larger area in one plane.
Nuclear DNA was stained with DAPI (blue). The bar equals 10 μm

Fig. 2 a Immunofluorescence of Rap1Δ/Δ pachytene spermatocytes
using anti-Rap1, anti-TRF1, anti-TRF2 and anti-SUN1 antibodies (Cy3,
red). Synaptonemal complex was labelled with anti-SYCP3 protein
(FITC, green). TRF1, TRF2 and SUN1 colocalise with meiotic
telomeres at the ends of all pachytene SCs in Rap1Δ/Δ spreads and at
wild-type pachytene telomeres (data now shown and b). The small inset
displays the punctate NUP-like distribution pattern of SUN1 (red) of a
somatic nucleus. Bars represent 10 μm. b Multi-colour labelling of
Rap1+/+ Rap1Δ/Δ pachytene SCs with RAP1 (green, FITC), SUN1 (red,
Cy3), SYCP3 (golden, false-colored Cy5) and DNA (gray, inverted
DAPI) reveals colocalization of Rap1 with SUN1 at the wild-type but
not Rap1Δ/Δ telomere. Bar: 2.5 μm. c Frequency of colocalization of
telomere protein signals with SCs ends in one Rap1+/+ and three Rap1Δ/

Δ pachytene spermatocytes. 400 SC ends were evaluated for each
mouse. RAP1 localises to telomeres (ends) of Rap1+/+ SCs but is absent
from Rap1Δ/Δ meiotic telomeres. Shelterin components TRF1, TRF2 as
well as the SUN1 nuclear envelope transmembrane protein all localise
to Rap1Δ/Δ telomeres. Data were derived from pachytene spermatocyte
spreads as shown in (a, b)
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prophase stages of mammalian meiosis I Ku proteins are
down-regulated (Goedecke et al. 1999) and Ku protein
levels at mammalian meiotic telomeres are below the
detection level of IF (see, Scherthan 2004). Ku70 acts in
parallel to shelterin to suppress HR (Celli et al. 2006; Palm
and de Lange 2008; Sfeir et al. 2010) and has been detected
biochemically at somatic mammalian telomeres (Hsu et al.
1999). In budding yeast, Ku accumulates at meiotic
telomeres (Scherthan and Trelles-Sticken 2008). In this
study, we observed similar Ku70 staining patterns in wild-
type and Rap1Δ/Δ spreads with no enrichment at telomeres
in Rap1Δ/Δ spermatocytes (data not shown). The latter
would be expected if Ku was involved in telomere/nuclear
periphery localisation, as has been observed in vegetative
nuclei of budding yeast (Laroche et al. 1998). However, our
data in the mouse fail to reveal significant amounts of Ku70
at the meiotic Rap1Δ/Δ telomere, which suggests that the
mammalian Ku complex is not compensating for the loss of
Rap1 at meiotic telomeres.

Collectively, these data suggest that meiotic telomeres do
not require Rap1 for telomere/SUN protein interaction and
explain why the telomere/NE attachment is normal in
Rap1Δ/Δ meiocytes. It will hence be interesting to
determine which proteins are responsible for the interaction
with SUN1 at the mammalian meiotic telomere.

Normal DNA repair dynamics in Rap1-deficient meiosis

At somatic telomeres, mammalian Rap1 contributes to the
inhibition of homology-directed DNA repair (Sfeir et al.
2010), which is the major pathway for DNA repair during
meiosis. The onset of meiotic recombination depends of the
induction of numerous DSBs by the Spo11 nuclease
(Baudat et al. 2000; Romanienko and Camerini-Otero
2000), which leads to a DNA damage response and global
phosphorylation of histone H2AX, now called γ-H2AX.
Progress of HR is paralleled by regression of γ-H2AX
signal to the XY (sex) body in pachytene/diplotene
spermatocytes (Barchi et al. 2005; Mahadevaiah et al.
2001). In prophase I of wild-type and Rap1Δ/Δ mice γ-
H2AX formation was normal with strong γ-H2AX label-
ling in leptotene spermatocytes (Fig. 4a, b) and regression
of the γ-H2AX signal to the XY body in pachytene
spermatocytes (Fig. 4c, d).

Whilst the XY body chromatin of pachytene spermato-
cytes is the prominent site of γ-H2AX formation (Barchi et
al. 2005; Mahadevaiah et al. 2001), image enhancement can
reveal small γ-H2AX foci on pachytene bivalents that
represent ongoing repair by homologous recombination
(Chicheportiche et al. 2007; Lenzi et al. 2005; Roig et al.
2004).

We investigated γ-H2AX foci as markers for recombi-
nogenic DNA repair events at pachytene telomeres at

meiotic chromosome ends of Rap1Δ/Δ and wild-type
pachytene spermatocytes (Fig. 4c, d) and detected an
average of 0.83 (wt, range 0–4) and 0.57 (Rap1Δ/Δ, range
0–3) telomeric γ-H2AX foci/pachytene cell (n=30 sperma-
tocytes or ~1,100 telomeres per genotype) being an
insignificant difference (Student’s t test). These data sug-
gests that HR at Rap1Δ/Δ chromosome ends is similar to
the wild type.

Furthermore, we investigated the localisation of Mre11
nuclease of the Mre11/Rad50/NBS1 (MRN) complex that is
involved in DSB repair. In meiosis, Mre11 is required for

Fig. 4 a–d Immunofluorescence with anti-γ-H2AX (FITC, green)
and anti-SCP3 (Cy3, red) in spermatocytes of control Rap1+/+ and
Rap1Δ/Δ mice. a Wild-type leptotene spermatocyte displaying intense
γ-H2AX staining over developing SYCP3 axes (red dots). b Strong
γ-H2AX chromatin signal in a Rap1Δ/Δ leptotene spermatocyte. c, d
Intense γ-H2AX labelling of the XY body in spread pachytene
spermatocytes of Rap1+/+ and Rap1Δ/Δ mice due to image enhance-
ment that discloses smaller γ-H2AX foci at pachytene SCs, which
represent sites of DSB repair by homologous recombination. Small γ-
H2AX foci occur at tips of SCs (arrows, telomeres) in wild-type and
Rap1Δ/Δ pachytene spermatocytes in similar frequencies (see text). e,
f Mre11 signals (Cy3, red) are concentrated on the XY body (arrow)
that contains the sex chromosomes. Anti-SCP3 staining was applied to
reveal SCs (FITC, green). Nuclear DNA was stained with DAPI
(blue). Scale bars, 10 μm
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processing of the Spo11-induced DSBs, and Mre11 localises
to the XY body of pachytene - diplotene spermatocytes (Eijpe
et al. 2000; Goedecke et al. 1999). Mre11 localisation to the
XY body was observed in both wild-type and Rap1Δ/Δ

pachytene nuclei (Fig. 4e, f). Whilst the Mre11 complex
accumulates at dysfunctional somatic telomeres (Celli and de
Lange 2005; Takai et al. 2003), Mre11 was not detected at
meiotic wild-type and Rap1Δ/Δ telomeres (Fig. 4e, f).

Thus, the induction of DSBs and their recombinational
repair appears to proceeds normally in Rap1Δ/Δ spermato-
genesis.

Conclusions

These data reveal unexpectedly that Rap1 deficiency has no
detectable effect on several aspects of mouse meiosis.
Specifically, the association of telomeres with the NE, their
interaction with SUN1, the transient clustering of telo-
meres, and the progression of recombination appear normal
in absence of Rap1. The lack of requirement for Rap1 in
bouquet formation is strikingly different from the situation
in S. pombe where the contribution of Rap1 is key
(Chikashige and Hiraoka 2001). Since there are no
discernible Rap1 paralogs in the mouse genome and
because Rap1 fails to meet with the criteria for the
mammalian telomere/NE connector, it appears that either
this connection is mediated in a redundant way or that
another (shelterin) factor is the main mediator of the SUN
telomere attachment to the meiotic nuclear envelope.
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