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Summary

Human chromosome ends are protected by shelterin,
an abundant six-subunit protein complex that binds

specifically to the telomeric-repeat sequences, regu-
lates telomere length, and ensures that chromosome

ends do not elicit a DNA-damage response (reviewed
in [1]). Using mass spectrometry of proteins associ-

ated with the shelterin component Rap1, we identified
an SMN1/PSO2 nuclease family member that is closely

related to Artemis [2]. We refer to this protein as Apollo
and report that Apollo has the ability to localize to

telomeres through an interaction with the shelterin
component TRF2. Although its low abundance at telo-

meres indicates that Apollo is not a core component of
shelterin, Apollo knockdown with RNAi resulted in

senescence and the activation of a DNA-damage sig-
nal at telomeres as evidenced by telomere-dysfunc-

tion-induced foci (TIFs). The TIFs occurred primarily

in S phase, suggesting that Apollo contributes to a
processing step associated with the replication of

chromosome ends. Furthermore, some of the meta-
phase chromosomes showed two telomeric signals

at single-chromatid ends, suggesting an aberrant
telomere structure. We propose that the Artemis-like

nuclease Apollo is a shelterin accessory factor re-
quired for the protection of telomeres during or after

their replication.

Results and Discussion

Shelterin associates with several accessory factors that
are distinguished from the shelterin core components
(TRF1, TRF2, Rap1, TIN2, TPP1, and POT1) on the basis
of their lower abundance at telomeres and/or their tran-
sient association with chromosome ends [1]. Most shel-
terin-associated factors have additional nontelomeric
functions, contributing to the DNA-damage response
or other chromosomal transactions. We previously
reported on mass spectrometry of nuclear proteins
associated with a FLAG-[HA]2-tagged version of the
TRF2-interacting factor Rap1 [3]. In the course of these
experiments, a protein migrating slightly faster than
Rap1 was reproducibly observed. However, identity of
this Rap1-associated protein remained elusive, possibly
because of its low abundance and/or the technique
used for the polypeptide isolation, which involved slic-
ing an entire gel lane into 2 mm pieces [3]. Therefore,
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we repeated the isolation of the Rap1 complex to excise
the 60 kDa band for mass spectrometry (Figure 1A). The
Rap1/TRF2 complex was prepared under high-salt con-
ditions, which abrogate the DNA binding activity of TRF2
and also diminishes the interaction between TRF2 and
TIN2 [3], explaining why the Rap1 complex isolated in
this manner contains relatively little TIN2 and the shel-
terin components that associate with TRF2/Rap1
through TIN2 (TRF1, TPP1, and POT1) (Figure 1A).

Mass spectrometry of the 60 kDa Rap1-associated
protein identified six peptides from SNM1B (Figure 1A).
SNM1B is one of three SNM1 genes in the mammalian
genome that were identified on the basis of their se-
quence similarity to the Saccharomyces cerevisiae DNA
interstand cross-link (ICL) repair gene PSO2/SNM1 [4].
PSO2 and its mammalian orthologs have metallo-b-lac-
tamase/b-CASP domains [5, 6]. Although their functions
have not been fully worked out, both SNM1A and B have
been implicated in ICL repair [4, 7], and SNM1A localizes
to sites of DNA damage generated by ionizing radiation
(IR) [8]. SNM1C is known as Artemis, the nuclease in-
volved in V(D)J recombination and whose deficiency
leads to one form of SCID [2, 9, 10]. Artemis is also impli-
cated in nonhomologous end joining (NHEJ) of IR-
induced DNA breaks [11], and Artemis-deficient mouse
cells are radiosensitive, showing an increased level
of IR-induced genome instability [12]. SNM1C and
SNM1B are more closely related to each other than to
SNM1A (Figure S1A in the Supplemental Data available
online). To emphasize the relatedness of SNM1B and
Artemis, we refer to this protein as Apollo, the twin
brother of Artemis in Greek mythology.

The association of Apollo with shelterin was verified
on the basis of recovery of endogenous shelterin com-
ponents in immunoprecipitates (IPs) of transiently trans-
fected Myc-tagged Apollo. Myc-Apollo brought down
TRF2 and Rap1 but not TIN2 or TRF1 (Figure 1B). Apollo
IPs cotransfected with individual shelterin components
showed an association of Apollo with TRF2 and Rap1,
whereas the recovery of Apollo in association with
TRF1, TIN2, and POT1 was minimal (Figure 1C). In order
to determine whether Apollo could associate with TRF2
and to what extent Rap1 contributed to the interactions,
we cotransfected Apollo with several TRF2 truncation
alleles. These experiments indicated that Apollo can as-
sociate with TRF2’s TRFH (TRF homology [13, 14]) re-
gion, which is a protein-protein interaction domain that
mediates homodimerization of TRF2 (Figures 1D and
1E). Given that the TRFH domain is not sufficient for
the interaction of TRF2 with Rap1 [15], these results im-
ply that the Apollo-TRF2 interaction is likely to be Rap1
independent. The co-IP of Apollo and Rap1 (Figures 1B
and 1C) is probably due to the efficient association of
Rap1 with endogenous TRF2. In the course of these
experiments, we also found that Apollo had the ability
to interact with itself, resulting in coimmunoprecipitation
of Myc-tagged and HA-tagged Apollo (Figure 1F). These
results suggest that Apollo associates with shelterin
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Figure 1. Identification of Apollo as a TRF2-Interacting Protein Associated with Shelterin and Telomeres

(A) Silver-stained gel of the Rap1 complex isolated with FLAG/HA affinity purification of a C-terminally tagged FLAG-[HA]2-Rap1 construct

expressed in the human HeLa S3 clone. MWs are in kDa. The peptide sequences identifying SNM1B/Apollo were derived from the 60 kDa protein

migrating below the TRF2/Rap1 doublet.

(B) Interaction of Apollo with endogenous TRF2 and Rap1, but not TIN2 or TRF1. 293T cells were transiently transfected with pLPC-Myc-Apollo,

and immunoprecipitations (IP) were performed with the Myc antibody 9E10. IPs were analyzed by immunoblotting for the proteins indicated at
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through an interaction with TRF2. We note that the data
do not exclude the possibility that Apollo interacts with
a shelterin subcomplex that lacks one or more of the core
components. The interaction of SNM1B with TRF2 was
recently reported by Freibaum and Counter [16].

To determine whether Apollo can associate with telo-
meres, we expressed Myc-tagged Apollo in hTERT-
immortalized human BJ fibroblasts (BJ-hTERT) and
determined its localization by indirect immunofluores-
cence (IF). Myc-tagged Apollo showed a homogeneous
nuclear staining pattern (data not shown). Extraction
of soluble nucleoplasmic proteins with Triton-X 100 re-
vealed numerous small Myc-Apollo foci that coincided
with TRF1 and Rap1 signals (Figure 1G), indicating that
they represented telomeres. Myc-tagged Apollo was
also found in small foci that did not colocalize with telo-
meric markers. The nature of these localization sites was
not determined. In contrast to what has been reported
for SNM1A, we did not observe a general relocalization
of Myc-tagged Apollo to IR-induced sites of DNA dam-
age (Figure S2). Attempts to detect the endogenous
Apollo with an affinity-purified peptide antibody failed
(data not shown). Because this a-Apollo antibody de-
tected retrovirally expressed Apollo by IF (data not
shown) and in immunoblots (Figure S1C), the failure to
detect the endogenous protein is most likely due to its
low abundance, which was noted previously [2, 4, 7].
Its low abundance at telomeres argues against Apollo’s
being a component of the shelterin core complex.
Hence, Apollo appears to be one of the shelterin acces-
sory factors that are present as low copy number at
telomeres and/or have a transient association with chro-
mosome ends.

Because several other shelterin-associated factors
have been shown to play a role at telomeres, we used
RNAi-mediated knockdown to determine whether
Apollo also contributes to telomere function. Five inde-
pendent shRNAs were found to effectively reduce the
Apollo mRNA levels as determined by RT-PCR (Fig-
ure 2A; see Figure S1B for primer location). Two of the
shRNAs were also tested for their ability to diminish
the levels of Myc-tagged Apollo expressed from a retro-
viral construct (Figure S1C). Primary human IMR90 fibro-
blasts with diminished Apollo mRNA levels showed
a clear growth defect (Figure 2B). Within a week of intro-
duction of Apollo shRNAs, the cells gradually slowed
their proliferation and appeared to arrest. The reduced
proliferation was due to the depletion of Apollo because
it was rescued by the coinfection with a retrovirus
encoding a mutated version of Apollo lacking the target
site for one of the shRNAs (Figure S3A). The arrested
Apollo knockdown cells had a senescent morphology
and expressed SA-b-galactosidase, a marker for cellular
senescence (Figure 2C). In addition, all Apollo shRNAs
induced the upregulation of the CDK inhibitor p21,
a read-out for p53 activation (Figure 2D). Induction of
p16, a second CDK inhibitor implicated in senescence,
only occurred with Apollo shRNA H2 and may be an
off-target effect (Figure 2D). Induction of senescence
has previously been observed upon inhibition of TRF2
[17]. However, the Apollo shRNAs did not affect the
levels of TRF2 and Rap1 protein (Figure 2E), arguing
that the phenotypes are not due to diminished TRF2
function. Whereas the senescence phenotype was ob-
served with five independent Apollo shRNAs in IMR90
and also occurred in BJ and hTERT-immortalized BJ
fibroblasts (data not shown), no growth defect was
observed upon introduction of the Apollo shRNAs in
fibroblasts transformed with SV40 large T antigen or in
the HeLa tumor cell line (data not shown). Further work
will be required to determine whether Apollo is dispens-
able for the proliferation of such transformed cells.

The senescence resulting from Apollo knockdown is
consistent with the cells experiencing a persistent
DNA-damage signal. Dysfunctional telomeres are rec-
ognized by the canonical DNA-damage signaling
pathway, leading to activation of the ATM kinase [18]
and accumulation of DNA-damage response factors at
chromosome ends [19, 20]. The resulting TIFs are a
well-established read-out for telomere damage. Dimin-
ished Apollo expression enforced by three independent
shRNAs resulted in TIFs in w20% of IMR90 cells (Fig-
ure 3). The TIFs were obvious from IF for g-H2AX and
53BP1 and the colocalization of these DNA-damage re-
sponse factors with TRF1 (Figure 3A). The median num-
ber of TIFs per nucleus was w12 (Figure 3C). The TIF
phenotype associated with Apollo shRNA H6 was not
observed if the cells coexpressed the version of Apollo
resistant to this hairpin (Figure S3B), showing that the
DNA-damage signal is the result of Apollo inhibition.
Apollo knockdown also resulted in 53BP1 and g-H2AX
foci that were not obviously associated with telomeres,
suggesting that Apollo is required for global genome in-
tegrity as well as telomere protection. However, more
than half of the DNA-damage response foci in the Apollo
knockdown were localized at chromosome ends (Fig-
ure 3D), indicating that Apollo deficiency preferentially
affected telomeres.
the right, with the following antibodies (top to bottom): 647, 765, 864, 371, and 9E10. For panels (B), (D), (E), and (F), lanes marked ‘‘In’’ represent

2.5% of in the input lysate used for the IPs.

(C) Co-IP of Apollo with cotransfected TRF2 and Rap1. 293T cells were transiently transfected with the indicated pLPC constructs, and IPs were

performed with the 9E10 Myc antibody (left) or an HA antibody (HA.11) (right). IPs were analyzed by immunoblotting (IB) for protein expression

(top) and for interaction with Apollo (bottom), with the indicated antibodies.

(D) Schematic of the interaction between Apollo and TRF2. The following abbreviations are used: B, basic domain; TRFH, TRF homology domain;

MYB, Myb-type DNA binding domain; and NLS, putative nuclear localization signal.

(E) Apollo interacts with the TRFH domain of TRF2. Myc IPs of extracts from 293T cells transfected with the indicated constructs were immuno-

blotted with the Myc antibody to detect the TRF2 alleles and the HA antibody to detect Apollo. The TRF2 domains referred to above the lanes

(FL denotes full length) and the DN version of Apollo are shown in panel (D).

(F) Apollo interacts with itself. 293T cotransfection experiments were as in panels (C) and (E) with the indicated constructs. Antibodies used for IP

and IB are indicated.

(G) Localization of retrovirally expressed Myc-tagged Apollo in BJ-hTERT cells. Apollo was detected by using the 9E10 Myc Ab (Alexa488, green).

Rap1 was detected with Ab 765 (RRX, red). TRF1 was detected with Ab 371 (RRX, red). Cells were extracted with Triton-X 100 to remove soluble

proteins. Top panels show BJ-hTERT cells infected with the empty pLPC vector.
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Figure 2. Diminished Apollo Expression in

Human IMR90 Fibroblasts Results in a Senes-

cent-like Phenotype

(A) Reduction of Apollo mRNA levels resulting

from RNAi. RNA derived from cells infected

with the indicated shRNA-encoding retro-

viruses was processed to detect Apollo

mRNA and GAPDH mRNA as a control with

RT-PCR (see Experimental Procedures and

Figure S1B). The RT-PCR detects two ver-

sions of Apollo mRNA generated by alter-

native splicing (Figure S1B). Luc denotes

luciferase shRNA.

(B) Diminished cell proliferation upon inhibi-

tion of Apollo. IMR90 cells were infected

with the indicated shRNA retroviruses and

subjected to puromycin selection for 3 days.

Subsequently, cells numbers were measured

at the indicated time points, with day 0 repre-

senting the first day after puromycin selec-

tion.

(C) Senescence-like phenotype of IMR90

cells with diminished Apollo expression.

Twelve days after selection for the indicated

shRNAs, cells were photographed after stain-

ing (37ºC, overnight) for SA-b-galactosidase

[40].

(D) Induction of p21 upon Apollo inhibition.

Immunoblot of extracts from the cells shown

in (B) at day 5 after selection. The following

antibodies were used: p21, F5 (Santa Cruz);

p16, C20 (Santa Cruz); and g-tubulin, GTU

488 (Sigma).

(E) Apollo knockdown does not affect TRF2

and Rap1. Immunoblot of extracts from the

cells shown in (B) at day 5 after selection.

The following antibodies were used: TRF2

(647); Rap1 (765); and g-tubulin, GTU 488

(Sigma).
Because the TIFs were only observed in w20% of the
Apollo knockdown cells, we asked whether they ap-
peared in a specific stage of the cell cycle. Initial exper-
iments suggested that the TIFs arose during or after
DNA replication. Specifically, we noted that the TIF-
positive cells often had a subset of telomeric signals
that appeared as doublets (Figure 3A). This pattern sug-
gested that the TIFs occurred in cells that had replicated
some, but not all, of their telomeres. To test whether the
TIFs were more prominent in S phase than in G1, we
examined cells that had been cultured in the presence
of BrdU for 3 hr. Very few TIF-positive cells lacked the
ability to incorporate BrdU (Figure 3E). The fraction of
TIF-positive cells that had incorporated BrdU was 91%
and 83% for the Apollo shRNAs H2 and UTR, respec-
tively (n R 150 for each). On the basis of the nuclear
BrdU staining pattern, the TIF-positive cells appeared
to be in all stages of S phase (data not shown). This
would be expected if the TIFs are associated with telo-
mere replication because mammalian telomeres repli-
cate throughout S phase [21, 22]. Collectively, the data
suggest that Apollo contributes to the protection of telo-
meres during or after DNA replication.

Because knockdown of Apollo induced a DNA-
damage signal at telomeres, we evaluated the status
of the telomeric DNA. DNA analysis showed no signifi-
cant changes in the telomeric overhang or the double-
stranded telomeric-repeat array (Figures S4A and
S4B). In addition, the analysis of metaphase spreads
derived from Apollo knockdown cells did not show sig-
nificant levels of telomere aberrations (Figure 4A and
data not shown), including the previously described in-
dices of telomere dysfunction such as telomere-telo-
mere fusions [17], telomere sister-chromatid exchanges
[23, 24], telomeric DNA-containing Double Minute chro-
mosomes [25], or extrachromosomal telomeric signals
[26]. However, we did observe a small but significant
increase of chromatid ends with two or more distinct te-
lomeric FISH signals instead of one (Figures 4A and 4B).
Chromosome orientation FISH (CO-FISH; [27]) showed
that there was no preference for the telomere generated
by lagging-strand or leading-strand DNA synthesis with
regard to the occurrence of these doublets (data not
shown). Telomere doublets at single-chromatid ends
have been noted previously in Atm2/2 mouse cells
[28] and also occur at low frequency in unperturbed hu-
man fibroblasts and other human cells (Figure 4B; [29]).
The nature and origin of these aberrant telomere struc-
tures has not been established.

This study and the accompanying report from the Gil-
son group [30] identifies the Artemis-like nuclease
Apollo as a telomere-associated factor. Although Apollo
interacts with TRF2 and can be targeted to telomeres,
our inability to detect the endogenous Apollo at chromo-
some ends suggests that it is much less abundant than
shelterin. On the basis of its low abundance and the data
suggesting that Apollo has a nontelomeric function in
ICL repair, Apollo qualifies as a shelterin accessory
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Figure 3. Induction of a Telomere Damage

Signal in Cells with Diminished Apollo

(A) IF showing colocalization of g-H2AX (top)

and 53BP1 (bottom) foci with telomeric sites

marked by TRF1 in IMR90 nuclei of cells

treated with the Apollo shRNAs indicated on

the left. The following antibodies were used:

TRF1, 371 (RRX, red); g-H2AX from Upstate

(Alexa488, green); and 53BP1 Mab, a gift

from T. Halazonetis (Alexa488, green). Cells

were processed at day 3 after selection.

(B) Quantification of the induction of TIFs by

Apollo shRNAs. Cells were processed as

shown in panel (A), and TIFs were scored on

the basis of colocalization of DNA-damage

factors with TRF1. The bar graph shows the

percentage of cells (median and standard de-

viation based on n = 3; >100 cells per data

point) containing five or more TIFs for each

of the indicated shRNAs.

(C) Quantification of the number of TIFs per

cell. The bar graph represents data derived

from images as shown in (A). The percentage

of foci colocalizing with TRF1 was deter-

mined in nuclei with R5 TIFs.

(D) Quantitative analysis of the fraction of

DNA-damage foci that colocalize with telo-

meres. Cells were processed as in (A) and

(B). For each TIF-positive nucleus, the per-

centage of foci colocalizing with TRF1 was

determined. Data from g-H2AX and 53BP1

IF were indistinguishable and were pooled

to generate the bar graphs.

(E) TIFs occur preferentially in S phase cells.

IMR90 cells 4 days after introduction of

Apollo shRNA H2 were cultured in the pres-

ence of BrdU for 3 hr and then processed

for IF. The images show IF for TRF1, BrdU,

and g-H2AX as indicated. See Experimental

Procedures. Antibodies for TRF1 and 53BP1

are as in (A). 91% of the TIF-positive cells

contained BrdU (n = 173). A similar result

was obtained for shRNA UTR.
factor rather than a bona fide component of the shelterin
core complex. The shelterin accessory factors with
known function in DNA-damage processing have been
proposed to execute or regulate processing steps that
are needed for telomere protection and/or maintenance
[1]. However, the telomeric function of relatively few
shelterin-associated proteins has been elucidated.
Examples are the multifunctional PARP; tankyrase 1,
which plays a role in the regulation of telomere length
[31, 32]; the WRN helicase, which contributes to telo-
mere stability [33, 34]; and the NHEJ factor Ku, which
represses homologous recombination at telomeres
[35]. What distinguishes Apollo from these and other
shelterin accessory factors is the prominent telomere
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Figure 4. Apollo shRNAs Increase the Occurrence of Single-Chromatid Telomere Doublets

(A) Metaphase spreads illustrating presence of telomere doublets at single-chromatid ends. Metaphase spreads were obtained from BJ-hTERT

cells treated with the indicated shRNAs and processed for telomeric FISH (FITC, green). DNA was stained with DAPI (false colored in red).

Arrowheads highlight chromatids with telomere doublets. Enlarged images (bottom right) are derived from BJ-hTERT cells and BJ cells express-

ing SV40 large T antigen, both treated with Apollo shRNAs. Metaphases were harvested at day 3 after selection.

(B) Quantification of telomere doublets in BJ-hTERT cells treated with the indicated shRNAs. Metaphases were treated as in (A) and examined for

the occurrence of telomere doublets at each chromatid end. p value was based on Student’s t test. Data were derived from cells with and without

SV40 large T. There was no significant difference between the two datasets.
DNA-damage signal resulting from its partial inhibition.
Apollo appears to repress the DNA-damage signal at
telomeres during or after their replication, and in its ab-
sence, a subset of the replicated telomeres attain fea-
tures of DNA breaks and appear structurally aberrant
in mitosis. Telomeres are thought to require multiple
processing steps during and after DNA replication in
order to regenerate the correct structure at the telomere
terminus, to attain the protected state, and to allow
telomerase-mediated telomere maintenance. It will be
important to understand whether and how Apollo con-
tributes to these events.

Experimental Procedures

Isolation of the Rap1 complex was performed by FLAG-HA affinity

purification as described previously [3]. Eluted proteins were sepa-

rated by SDS-PAGE (5%–15% gradient), the 60 kDa band was ex-

cised and subjected to trypsin digestion. The resulting peptides

were extracted, and the protein was identified by mass spectrome-

try at the Rockefeller University Proteomics Resource Center. Apollo

(SNM1B) cDNA was obtained from Invitrogen, and tagged versions
of Apollo were generated by using standard PCR cloning into the

pLPC retroviral vector. 293T cell transfection and immunoprecipta-

tion were performed as described previously [3]. shRNAs were gen-

erated in pSUPER-retro (OligoEngine), and retroviral infections were

performed as described previously [36]. The sequences of the

shRNA targets are as follows: H2, 50-GAAGCTGCCCACCAGATTG-

30; H6, 50-GACTCTGTACAGCAATACA-30; H7, 50-GATCAATCTCAAG

CTGACA-30; H8, 50-GATGGAGGTCCAGAAGCCA-30; and UTR, 50-

GGTCCTCGTGCCTATGGAA-30. The Luciferase control hairpin is

50-CGTACGCGGAATACTTCGA-30. The target sequence of shRNA

H6 was changed to 50-GACTCCGTCCAACAATACA-30 by standard

site-directed mutagenesis to create pLPC-Myc Apollo*H6. RT-PCR

was performed with the oligo-dT ThermoScript RT-PCR system (In-

vitrogen). RNA was isolated from approximately 106 cells with the

Qiagen RNAeasy kit. Three to four micrograms RNA was reverse

transcribed with the ThermoScript RT-PCR system (Invitrogen) by

using oligo dT priming and the protocol provided by the manufac-

turer. The primers used for PCR after cDNA synthesis are as follows:

Apollo RT1 (forward GACTCCAACCCTACCACCATGAATG, reverse

CAGTAGCTGTACCAACTCCAGGCGC) and GAPDH (forward TGAA

GGTCGGAGTCAACGGATTTGGT, reverse CATGTGGGCCATGAGG

TCCACCAC). Antibody to a KLH-conjugated Apollo peptide (NH2-

SRKIHSSHPDIHVIPYSDHSSYSC-COOH; starting at aa 259) was

generated in NZW rabbits (Covance). The resulting immune serum,

Ab 1477, was affinity purified. Procedures for immunoblotting,
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indirect immunofluorescence, analysis of telomeric DNA, and meta-

phase chromosomes have been described previously [3, 37–39]. For

the analysis of the cell-cycle stage of TIF induction, IMR90 cells were

pulsed with 10 mM BrdU for 3 hr, fixed in 3% paraformaldehyde, and

stained first for TRF1 and 53BP1 and then with rabbit-RRX (Jack-

son), mouse-Cy5 (Molecular Probes), and rat anti-BrdU conjugated

to FITC (Axyll) in a buffer containing 10% goat serum, 3 mM MgCl2,

and 100 U/ml DNaseI.

Supplemental Data

Supplemental Data include four figures and are available with this

article online at: http://www.current-biology.com/cgi/content/full/

16/13/1295/DC1/.
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Supplemental Data S1

Apollo, an Artemis-Related Nuclease,
Interacts with TRF2 and Protects
Human Telomeres in S Phase

Megan van Overbeek and Titia de Lange

Figure S1. Naming, Structure, Detection, and Inhibition of Apollo

(A) Phylogenetic tree showing that Artemis and Apollo (SNM1B) are closely related. Protein sequences were obtained from the NCBI, and align-

ments were generated with CLUSTALW by using the Multalin website (http://prodes.toulouse.inra.fr/multalin/) with default setting for all param-

eters.

(B) Schematic of Apollo indicating the PCR primers used for RT-PCR and the target sites of the shRNA hairpins used for Apollo knockdown. The

RT-PCR strategy detects Apollo mRNA with and without inclusion of the indicated alternatively spliced exon.

(C) Immunoblot showing reduced expression of exogenous Apollo upon introduction of Apollo shRNAs H2 and H6. BJ cells were infected with

a retrovirus expressing Apollo or the empty vector and subsequently infected with the indicated shRNA retroviruses. An antibody raised to an

Apollo peptide (Ab 1477) was used to detect the overexpressed protein. This antibody did not detect endogenous Apollo in immunoblots or by IF.

http://prodes.toulouse.inra.fr/multalin/


Figure S2. Exogenously Expressed Apollo Does Not Localize at IR-Induced Foci

BJ-hTERT cells expressing Myc-tagged Apollo were irradiated as indicated and processed for IF at the indicated times. 53BP1 (Alexa488,

green) was used as an indicator of DNA-damage foci. Apollo was detected with the 9E10 Myc antibody (RRX, red). Cells were pre-extracted

with Triton-X 100. There was no significant change in the localization pattern of Apollo after IR, and the 53BP1 foci rarely colocalized with Apollo.
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Figure S3. Rescue of the Growth Defect and

TIF Phenotypes in Apollo Knockdown Cells

by Coexpression of an shRNA-Resistant

Apollo Allele

(A) Absence of the proliferation phenotype of

Apollo shRNA H6 in cells that coexpress

shRNA-resistant Apollo (*H6). BJ cells were

infected with the indicated shRNA retrovi-

ruses and subjected to puromycin selection

for 3 days. Subsequently, cell numbers were

measured at the indicated time points, with

day 0 representing the first day after puromy-

cin selection.

(B) Absence of the TIF phenotype of Apollo

shRNA H6 in cells coexpressing shRNA-

resistant Apollo (*H6). BJ cells were pro-

cessed as shown in Figure 3A, and nuclei

were inspected for TIFs on the basis of colo-

calization of g-H2AX with TRF1. The bar

graph shows the percentage of cells contain-

ing five or more TIFs for each of the indicated

cell lines.

Figure S4. Lack of Detectable Changes in the

Telomeric DNA after Knockdown of Apollo

with shRNAs

(A) Example of analysis of telomeric DNA. BJ

cells infected with a retrovirus expressing

shRNA H2 or the luciferase shRNA control

were processed for DNA analysis 5 days after

infection. DNA was harvested and digested

with MboI/AluI and fractionated on an aga-

rose gel. The single-stranded telomeric over-

hang was detected by in-gel hybridization of

a 32P-labeled C strand oligo. After quantifica-

tion of the signal, the DNA was denatured in

situ with NaOH, neutralized, and rehybridized

with the same probe to detect the total telo-

meric DNA. The overhang signal was normal-

ized to the total telomeric DNA in the same

lane. These values were compared between

cells containing the Apollo shRNA and the lu-

ciferase control. Molecular weights of the

markers (to the left of the gel) are given in kb.

(B) Quantification of the relative overhang sig-

nal in Apollo knockdown cells. Cells (as indi-

cated) infected with the listed Apollo shRNAs

were analyzed as in (A) alongside the appro-

priate luciferase controls. The overhang sig-

nals were normalized to the total telomeric

DNA signal, and these values were compared

to the luciferase control in each experiment.
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