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Significant Role for p16INK4a in p53-Independent
Telomere-Directed Senescence

telomere damage but have also endured extensive
stress from in vitro culturing, making it difficult, if not
impossible, to specifically address the contribution of
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1230 York Avenue p16INK4a to telomere-directed senescence. Here, we

avoid this problem and address the role of p16INK4a inNew York, NY 10021
telomere-directed senescence independently of addi-
tional stresses by inducing immediate telomere dys-
function through inhibition of the telomere binding pro-Summary
tein TRF2. When TRF2 is dislodged from telomeres with
a dominant negative allele (TRF2�B�M), a fraction of chro-Telomere attrition in primary human fibroblasts in-

duces replicative senescence accompanied by activa- mosome ends lose their protection (reviewed in [20]).
The consequences of TRF2 inhibition include degrada-tion of the p53 and p16INK4a/RB tumor suppressor path-

ways. Although the contribution of p53 and its target, tion of the telomeric 3� G-overhang by ERCC1/XPF, fu-
sion of chromosome ends by DNA ligase IV, activation ofp21, to telomere-driven senescence have been well

established, the role of p16INK4a is controversial. At- ATM, and recruitment of DNA damage response factors
such as 53BP1 and the Mre11 complex to telomerestempts to dissect the significance of p16INK4a in re-

sponse to telomere shortening have been hampered [21–25]. Loss of the telomeric overhang and association
of DNA damage response factors with telomeres haveby the concomitant induction of p16INK4a by cell culture

conditions. To circumvent this problem, we studied also been observed in fibroblasts that have been pas-
saged into senescence [25, 26].the role of p16INK4a in the cellular response to acute

telomere damage-induced by a dominant negative al- Fibroblasts respond to this TRF2�B�M-induced telo-
mere dysfunction by entering a growth arrest that islele of TRF2, TRF2�B�M. This approach avoids the con-

founding aspects of culture stress because parallel indistinguishable from replicative senescence and is ac-
companied by the activation of p53, induction of p21,cultures with and without telomere damage can be

compared. Telomere damage generated with TRF2�B�M upregulation of p16INK4a, and hypophosphorylation of RB
[27]. Inhibition of p53 with HPV16E6 or a dominant nega-resulted in induction of p16INK4a in the majority of cells

as detected by immunohistochemistry. Inhibition of tive p53 allele (p53175H), or inactivation of RB by HPV16E7
reduces, but does not fully abrogate, this cell cycle ar-p16INK4a with shRNA or overexpression of BMI1 had a

significant effect on the telomere damage response rest [27]. Abrogation of the arrest requires the simultane-
ous inactivation of both p53 and RB by SV40LT orin p53-deficient cells. While p53 deficiency alone only

partially abrogated the telomere damage-induced cell HPV16E6 and E7 together, suggesting a redundant role
for the p53 and RB pathways in the induction of telo-cycle arrest, combined inhibition of p16INK4a and p53

led to nearly complete bypass of telomere-directed mere-directed senescence [27]. These studies showed
that the RB pathway can mediate telomere-directed cellsenescence. We conclude that p16INK4a contributes to

the p53-independent response to severe telomere cycle arrest in a p53-independent manner, but the spe-
cific contribution of p16 to this pathway was not ad-damage.
dressed.

In order to determine the contribution of p16INK4a toResults and Discussion
telomere-directed senescence, we used RNAi in combi-
nation with TRF2 inhibition in primary human fibroblasts.The involvement of p16INK4a in telomere-directed senes-

cence has been contentious [1–10]. Telomere attrition Prior to induction of telomere damage with TRF2�B�M,
we introduced p16INK4a shRNA (either one of two differentin primary cells induces p16INK4a [11–13], and stabilization

of telomeres by telomerase abolishes p16INK4a accumula- target sequences) and/or p53-repressing reagents ac-
cording to the schematic shown in Figure 1A. Cells weretion [14]. This suggests that p16INK4a is upregulated in
kept under selective pressure during the course of theresponse to dysfunctional telomeres and could contrib-
analysis to prevent loss of TRF2�B�M expression. Immu-ute to telomere-directed senescence. However, p16INK4a

nofluorescence (IF) detection of TRF2 indicated that allalso responds to numerous telomere-independent
cells retained high levels of TRF2�B�M over the entirestress signals, including constitutive oncogenic signal-
2-week time course of the analysis (Figure 1C and dataing, DNA damage, and suboptimal in vitro tissue culture
not shown). Inhibition of p16INK4a with shRNA stronglyconditions [4, 15–19]. Previous studies that have ad-
decreased the expression level of p16INK4a and abolisheddressed the role of p16INK4a in telomere-directed senes-
its induction after telomere damage (Figure 1B). Simi-cence typically relied on prolonged in vitro passaging
larly, repression of p53 with a dominant negative alleleof cells until they senesce with shortened telomeres.
(p53175H) or shRNA resulted in diminished p53 activity asHowever, by that time cells have not only sustained
detected by impaired induction of p21. The induction of
p16INK4a by telomere damage did not require p53.
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amined p16INK4a at the cellular level by immunohisto-
chemistry (IHC) under conditions where virtually all cells
in the culture express the dominant negative allele of
TRF2 (Figure 1C). As expected, p16INK4a was detectable
at variable levels in control cells reflecting the occasional
induction of p16INK4a by culture conditions. The p16INK4a

staining intensity was dramatically increased in cultures
expressing TRF2�B�M, and this response was seen in
nearly every cell. Together with the immunoblotting
data, this finding showed that this induction of p16INK4a

is a specific response to telomere damage and not the
consequence of culture stress.

We next determined the contribution of p16INK4a to the
execution of a cell cycle arrest after telomere damage.
The normal response to telomere damage is an arrest
in G1, which can be monitored by diminished incorpora-
tion of BrdU and by lack of cell proliferation [27]. In
cells with severely impaired G1/S checkpoints, BrdU
incorporation is not diminished after telomere damage.
However, such cells still have a growth defect, presum-
ably due to the extensive genome instability resulting
from telomere fusions and the concomitant problems in
mitosis. As expected from previous studies, inhibition
of p53 function with a dominant negative allele (p53175H)
or shRNA partially rescued the proliferation block of
cells expressing TRF2�B�M (Figures 2A, 2G, and 2H). In
addition, p53 inhibition had a strong effect on the rate
of BrdU incorporation of cells with telomere damage
(Figures 2C, 2E, and 2F). By comparison, the effect of
shRNA-mediated p16INK4a inhibition on the proliferation
of TRF2�B�M-infected cells was not statistically signifi-
cant (Figure 2). The importance of p53 in mediating the
proliferation block after telomere damage was also obvi-
ous from TRF2�B�M expression in human fibroblasts that
have a homozygous intragenic deletion in the p16INK4a

gene [28]. These cells, while lacking p16INK4a function, still
displayed a severe proliferation defect and diminished
BrdU incorporation after introduction of TRF2�B�M (Fig-

Figure 1. Induction of p16INK4a upon TRF2�B�M-Mediated Telomereure 2D and data not shown). Thus, p16INK4a deficiency
Dysfunctionalone does not allow a strong by-pass of the telomere
(A) Experimental set-up: IMR90 primary human fibroblasts were se-damage-induced arrest.
quentially transduced with 1) pBabeNeo-P53175H, pRetroSuper-Although p53 deficiency had an obvious impact on
p53sh, or appropriate empty vector control, 2) pRetroSuper-p16sh,

the TRF2�B�M-induced proliferation block, the effect was MSCVU6-p16sh, pBabePuro-BMI1, or corresponding vector con-
always partial, even when p53 was inhibited with shRNA. trol, 3) pBabePuro-TRF2�B�M, pWZLHygro-TRF2�B�M, or correspond-
Because this result suggested the presence of a p53- ing vector control. The data shown in Figure 2 was obtained with

pRetroSuper-p16sh. MSCVU6-p16sh gave similar results. After eachindependent response to telomere damage, we exam-
round of infection, cells were first passaged in medium containingined the role of p16INK4a in this setting. By determining
neomycin, hygromycin, or puromycin for 7, 4–5, or 3 days, respec-the rate of BrdU incorporation in TRF2�B�M cultures rela-
tively, before continuing with the next round of infection. After the

tive to the appropriate vector control cultures, we cor- final infection with TRF2�B�M, cells were kept in selective medium
rected for the effects of p16INK4a and p53 inhibition on during the analysis to prevent loss of the TRF2�B�M retrovirus.
entry into S phase in the absence of TRF2�B�M. This (B) Expression of TRF2�B�M, p53175H, p21, and p16INK4a proteins in

IMR90 cells infected with combinations of empty vector, p16sh-approach removes possible effects of culture stress and
(pRetroSuper), p53175H-, and TRF2�B�M-encoding retroviruses. Ly-allows specific evaluation of the role of p16INK4a in the
sates were prepared on day 17 and equal amounts of protein weretelomere dysfunction-induced G1/S arrest. The cor-
loaded in each lane (immunoblotting for �-tubulin serves as loading

rected data showed that whereas inhibition of p53 af- control). At the time point analyzed, the previously documented
forded a partial escape from TRF2�B�M-induced growth induction of endogenous p53 by TRF2�B�M is no longer detectable.
arrest, inhibition of both p16INK4a and p53 together re- (C) Immunohistochemical analysis of p16INK4a and detection of

TRF2�B�M by immunofluorescence in primary IMR90 fibroblasts in-sulted in an almost complete restoration of the rate of
fected with control, p16sh-, or TRF2�B�M-encoding retroviruses onDNA synthesis (Figures 2E and 2F; p � 1.32x10�9 [n �
day 8. Data shown are with pRetroSuper-p16sh. MSCVU6-p16sh17] for the relative effect of p16sh in p53175H cells). This
gave the same result.indicates that in absence of p53, p16INK4a is an inhibitor

of entry into S phase after telomere damage.
Immunofluorescence analysis of TRF2 expression
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Figure 2. Inhibition of p16INK4a Cooperates
with p53 Inactivation in Abrogating TRF2�B�M-
Induced Growth Arrest

(A) Inhibition of p53 alone partially alleviates
TRF2�B�M–induced growth arrest. Growth
curves of IMR90 primary human fibroblasts
infected with pRetroSuper-p53sh and/or
pBabePuro-TRF2�B�M retroviruses. Standard
deviations were less than 10%.
(B) Inhibition of p16 alone does not signifi-
cantly improve the proliferation of cells with
TRF2�B�M-induced telomere damage. Growth
curves of IMR90 cells infected with MSCVU6-
p16sh and/or pWZLH-TRF2�B�M retroviruses.
Standard deviations were less than 10%.
(C) S phase index in TRF2�B�M-espressing
IMR90 cells shown in (A) and (B) measured
by BrdU incorporation on day 8.
(D) Growth curves of p16INK4a-deficient human
diploid fibroblasts after infection with a
pBabePuro-TRF2�B�M retrovirus. Standard
deviations were less than 10%
(E) BrdU incorporation rates (on day 8) of
primary IMR90 fibroblasts infected with
pBabe-Neo-p53175H or pBabe-Neo control
and pRetroSuper-p16sh or pRetroSuper con-
trol retroviruses followed by pBabePuro-
TRF2�B�M or pBabePuro control retroviruses.
(F) Relative BrdU incorporation rates of pri-
mary IMR90 fibroblasts infected with combi-
nations of vector control, p53175H-, and p16sh-
encoding retroviruses. Averages from three
independent experiments using two different
p16sh vectors (pRetroSuper-p16sh and
MSCVU6-p16sh) are shown.
(G) Growth rates of IMR90 cells infected with
pBabeNeo-p53175H or pBabeNeo control and
pRetroSuper-p16sh or pRetroSuper control
followed by pBabePuro-TRF2�B�M or pBabe-
Puro control retroviruses. Growth rates were
determined by calculating the average in-
crease in population doublings over days
3–11 of selection from five experiments (three
independent infections).
(H) Growth rates of TRF2�B�M-espressing cells
in G, relative to their respective vector con-
trols.

confirmed that the observed rescue in DNA synthesis expression resulted in a 60% reduction in proliferation
of IMR90 fibroblasts (Figures 2G–2H). Whereas inhibitionby combined p53 and p16INK4a inhibition was not due to

an increased outgrowth of cells with diminished of p53 alone resulted in partial rescue of TRF2�B�M-
induced growth arrest, a significantly better rescue wasTRF2�B�M expression (Figure 1C and data not shown).

On the contrary, TRF2�B�M expression levels appeared observed in cultures in which both p16INK4a and p53 were
inactivated (p � 1.30x10�6 [n � 5] for the relative effecthigher in cells with inhibited p53 and p16INK4a expression

than in controls, especially at later time points when of pRetroSuper-p16sh in p53175H cells in Figure 2H; p �
0.0196 [n � 3] for the relative effect of a second shRNA,controls cells showed decreased TRF2�B�M expression

(data not shown). This suggests a greater tolerance for MSCVU6-p16sh in p53175H cells [data not shown]).
Although the rescue of DNA synthesis by combinedtelomere damage and thus less selection against

TRF2�B�M in cells lacking both p53 and p16INK4a function. inactivation of p16INK4a and p53 was almost complete
(�90%; Figure 2F), the cells still showed a somewhatTo assess the effect of p16INK4a on the proliferation of

p53 deficient cells with telomere damage, we measured reduced proliferation rate (70%–80%; Figure 2H). This
can be explained by the deleterious effects of telomereculture growth rates during the 2 weeks following infec-

tion with the TRF2�B�M retrovirus. Cultures were not fol- fusions, which include anaphase bridges, chromosome
nondisjunction, translocations, and deletions [22]. Solowed longer because after 2–3 weeks, cells with low-

ered levels of TRF2�B�M begin to appear. TRF2�B�M even though the downstream signaling response to telo-
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Table 1. Chromosome Fusions in IMR90 Cells Expressing TRF2�B�M

% Metaphases with Number of Fusion
Retroviruses Chromosome Fusions per Metaphase

vector 0 (n � 35) 0
TRF2�B�M 37 (n � 27) 0.56
TRF2�B�M � p16sh 41 (n � 22) 0.55
TRF2�B�M � p53175H 64 (n � 22) 1.68
TRF2�B�M � p16sh � p53175H 53 (n � 30) 1.33
TRF2�B�M � BMI1 � p53175H 60 (n� 20) 2.0

mere dysfunction might be disabled through p53 and negative for SA-�-galactosidase activity (Figure 3). This
result further illustrates that in absence of p53, p16INK4ap16INK4a inactivation, telomere damage still results in le-

thal genome instability. Indeed, metaphase spreads of has an important role in inducing senescence in re-
sponse to telomere damage.TRF2�B�M-expressing cells with inhibited p16INK4a and

p53 function contained multiple chromosome end fu- As an independent way of inhibiting p16INK4a, we ex-
pressed the Polycomb-group repressor BMI1 alone andsions (Table 1). This excludes the fact that the observed

p16/p53-mediated rescue of the growth arrest induced in combination with p53175H in IMR90 fibroblasts and
investigated the response to TRF2�B�M. BMI1 repressesby TRF2�B�M is due to improved telomere protection. In

fact, the frequency of chromosome fusions in cells with the expression of both p16INK4a and the second product
of the INK4a locus p19ARF and has been shown to extendinhibited p16INK4a and p53 function, as well as in

TRF2�B�M-expressing cells with inactivated p53 only, the replicative lifespan of mouse and human fibroblasts
[6, 30]. BMI1 prevented the induction of p16INK4a uponwas higher than in TRF2�B�M-expressing cells with nor-

mal p53 and p16INK4a function. This is consistent with our TRF2�B�M expression, indicating that increased Poly-
comb-group repression on the INK4a locus is dominantobservations that these cells have a diminished ability

to arrest in response to TRF2�B�M-induced telomere dys- over the mechanism that drives p16 upregulation upon
telomere dysfunction (Figure 4A).Consistent with our re-function.

Besides growth arrest and upregulation of cell cycle sults from using RNA interference to inhibit p16INK4a,
BMI1 significantly reduced the proliferation-inhibitinginhibitors, other characteristics of senescent cells are

their flat morphology and staining for senescence-asso- effect of TRF2�B�M, especially in combination with p53
inhibition (Figures 4B–4D).ciated �-galactosidase (SA-�-galactosidase) [29]. Al-

though a significant reduction in these parameters was Telomere-directed senescence is regarded as a major
tumor suppressor mechanism by limiting the outgrowthseen, especially for p53175H cultures, flat and SA-

�-galactosidase positive cells were still observed in of potentially tumorigenic cells (reviewed in [31–34]).
Telomeres whose functionality has been compromisedp53175H or p16sh IMR90 cultures expressing TRF2�B�M

(Figure 3). However, TRF2�B�M-expressing cultures in as a result of extensive attrition of telomeric DNA or
due to reduced function of telomere capping proteinswhich both p53 and p16INK4a were inhibited were morpho-

logically indistinguishable from control cultures and behave like chromosome internal double-strand breaks,

Figure 3. Inhibition of Both p53 and p16INK4a Abolishes Senescent Morphology and SA-�-Galactosidase Activity in Primary IMR90 Fibroblasts
with Dysfunctional Telomeres

IMR90 primary fibroblasts infected with combinations of empty vector control, p53175H-, p16sh- (pRetroSuper), or TRF2�B�M-encoding retroviruses
and stained for SA-�-galactosidase activity at day 12.
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Figure 4. The p16INK4a-Repressor BMI1 Atten-
uates the Senescence Response to TRF2�B�M

(A) P53175H, BMI1, TRF2�B�M, and p16INK4a pro-
tein levels in IMR90 cells shown in (B)–(D) at
day 12 of selection. Equal amounts of protein
were loaded in each lane.
(B) S phase index of primary IMR90 fibro-
blasts infected with combinations of control,
BMI1-, p53175H-, and TRF2�B�M-encoding re-
troviruses at day 8 of selection. The averages
of two independent experiments are shown.
(C) Average growth rates of IMR90 fibroblasts
infected with BMI1- and/or p53175H-encoding
retroviruses followed by pWZLH or pWZLH-
TRF2�B�M. Growth rates were determined
over days 4–12 from three duplicate experi-
ments (two independent infections).
(D) Relative growth rates of IMR90 fibroblasts
in which p16INK4a was repressed by BMI1 and
p53 was inhibited by p53175H expression or
shRNA. Graph represents results from three
independent duplicate experiments.

resulting in cell cycle arrest and senescence or apopto- exclude that this is in part related to the use of TRF2�B�M

as a surrogate for telomere shortening. For instance,sis. In cells with impaired DNA damage response check-
points, dysfunctional telomeres can induce genome in- our strategy forces us to analyze relatively early time

points at which p16 might not yet be at its maximumstability and a complex spectrum of genetic alterations
that promotes tumorigenesis (reviewed in [32, 35]). Re- due to its slow induction, resulting in the predominance

of the faster p53-dependent response.cent data provided evidence for loss of telomere func-
tion and the associated genome instability early in hu- A recent study of replicative senescence at the single-

cell level concluded that p16INK4a is not involved in senes-man breast cancer at the transition to ductal carcinoma
in situ [36]. These considerations underscore the need cence triggered by telomere shortening [9], a conclusion

that is discordant with the findings reported here. Thisfor detailed understanding of the cellular response to
deprotected telomeres. conclusion was based on the lack of a correlation be-

tween the presence of �-H2AX foci (an indicator of telo-Here, we have used TRF2 inhibition as a tool to induce
immediate telomere dysfunction in order to specifically mere dysfunction) and upregulation of p16INK4a, whereas

this correlation did exist for p21. However, the formationaddress the contribution of the p53 and p16INK4a/RB path-
ways to the telomere damage response. We found that of �-H2AX foci and the induction of p16INK4a occur with

different kinetics. DNA damage foci are formed immedi-p53 plays a major role but that p16INK4a is also clearly
responsible for a substantial part of telomere-directed ately (within hours) after telomere deprotection and they

are transient [23, 38]. By contrast, the induction ofsenescence in primary human fibroblasts. Thus, p16INK4a

provides an important additional fail-safe that prevents p16INK4A after telomere dysfunction appears to be a very
slow process. After retroviral infection of TRF2�B�M, itunlimited proliferation in the presence of telomere dam-

age even when the p53 pathway is disrupted. A similar takes one or two weeks before p16INK4a is readily detect-
able, a time point at which the �-H2AX foci will haveobservation was made recently in a study on the revers-

ibility of human cellular senescence, in which it was disappeared. Therefore, it would be expected that cells
with high levels of p16INK4a are generally devoid offound that p53 inactivation only resulted in the reversal

of senescence in cells with low levels of p16INK4a and not �-H2AX foci and vice versa, explaining the lack of corre-
lation observed. Thus, our finding that p16INK4a is a signifi-in cells with high levels of p16INK4a [37]. However, in that

study, as well as in a different study addressing the cant mediator of telomere-directed senescence is not
necessarily in conflict with the data of Herbig et al. [9].contribution of p16INK4a to senescence by transient trans-

fection of siRNA [8], cells were extensively passaged The signal through which dysfunctional telomeres ac-
tivate p53 and RB has not been fully established; how-until a senescent state was reached. Therefore, the

p16INK4a response probably at least in part reflects a ever, the telomere damage response has the hallmarks
of a DNA damage response and is transmitted throughreaction to accumulated culture stress and does not

directly address the role of p16INK4a in the telomere dam- the ATM and ATR kinases [23, 25, 39]. The resulting
activation of p53 by phosphorylation leads to increasedage pathway.

Although the effect of p16 inhibition on TRF2�B�M- expression of p21, which activates RB family proteins
by inhibiting their phosphorylation by cyclin dependentinduced growth arrest in p53-deficient cells is very clear,

the effect was minimal in p53 proficient cells. We cannot kinases [40]. Targeted disruption of p21 alone has been
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