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Tankyrase, a Poly(ADP-Ribose)
Polymerase at Human

Telomeres
Susan Smith, Izabela Giriat, Anja Schmitt,* Titia de Lange†

Tankyrase, a protein with homology to ankyrins and to the catalytic domain of
poly(adenosine diphosphate–ribose) polymerase (PARP), was identified and
localized to human telomeres. Tankyrase binds to the telomeric protein TRF1
(telomeric repeat binding factor–1), a negative regulator of telomere length
maintenance. Like ankyrins, tankyrase contains 24 ankyrin repeats in a domain
responsible for its interaction with TRF1. Recombinant tankyrase was found to
have PARP activity in vitro, with both TRF1 and tankyrase functioning as
acceptors for adenosine diphosphate (ADP)–ribosylation. ADP-ribosylation of
TRF1 diminished its ability to bind to telomeric DNA in vitro, suggesting that
telomere function in human cells is regulated by poly(ADP-ribosyl)ation.

Human telomere function requires two telo-
mere-specific DNA binding proteins, TRF1 and
TRF2 (1, 2). TRF2 protects chromosome ends
(3), and TRF1 regulates telomere length (4).
Overexpression of TRF1 in a telomerase-ex-
pressing cell line leads to progressive telomere
shortening, whereas inhibition of TRF1 increas-
es telomere length (4). TRF1 does not control
the expression of telomerase itself but is
thought to act in cis by inhibiting telomerase at
telomere termini.

To identify additional telomere-associated
proteins, we used a yeast two-hybrid screen
with human TRF1 as bait (5, 6 ). This screen
yielded two overlapping partial cDNAs
(TR1L-4 and TR1L-12) (Fig. 1A). A full-length
testis cDNA isolated with TR1L-4 encoded an
open reading frame of 1327 amino acids, pre-
dicting a protein of 142 kD (Fig. 1A) (7). The
central domain of this protein contains 24
ankyrin (ANK) repeats, a 33–amino acid motif
that mediates protein-protein interactions (8),
and its COOH-terminal region has homology to
the catalytic domain of PARP, a highly con-
served nuclear enzyme found in most eu-

karyotes (9). We therefore named the protein
tankyrase (TRF1-interacting, ankyrin-related
ADP- ribose polymerase).

The tankyrase-interacting domain in
TRF1 was identified by two-hybrid analysis
(6) with TR1L-12 (Fig. 1A). The tankyrase
fragment, consisting of 10 ANK repeats, in-
teracted with full-length TRF1 but not with a
TRF1 mutant lacking the NH2-terminal acid-
ic domain of TRF1 (Fig. 1B). Consistent with
this observation, significant interaction oc-
curred with the isolated NH2-terminal 68

amino acids of TRF1, which encompass the
acidic domain (Fig. 1B). These results indi-
cate that the acidic domain of TRF1 is nec-
essary and sufficient for interaction with
tankyrase. This domain is absent from TRF2,
and a two-hybrid analysis (6) indicated that
tankyrase does not interact with TRF2.

Three observations suggested that tankyrase
was a member of the ankyrin family, a group of
structural proteins that link integral membrane
proteins to the underlying cytoskeleton (10).
First, tankyrase, like all ankyrins, contained 24
copies of the ANK motif, whereas other ANK
repeat–containing proteins typically have 4 to 8
repeats. Second, the ANK repeats in tankyrase
and the ankyrins shared characteristic sequence
features, such as the presence of a hydrophobic
amino acid at position 3 and an Asn or a Asp at
position 29 (Fig. 2A). Third, the fifth ANK
copy in tankyrase was notably shorter than all
others, a feature also observed in ankyrins.
Apart from the ANK repeat domain, however,
there was no detectable homology between
tankyrase and ankyrins. The ankyrin domain of
tankyrase is flanked at the NH2-terminus by a
region carrying homopolymeric His, Ser, and
Pro tracts and at the COOH-terminus by a
sterile alpha module (SAM) motif (Fig. 2B),
which is postulated to function in protein-pro-
tein interaction (11).

The most striking feature of tankyrase is the
homology to PARP. In response to DNA dam-
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ture of tankyrase and
two-hybrid interaction
with TRF1. (A) Sche-
matic representation of
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of the two-hybrid plas-
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measured for strains expressing the indicated fusion proteins (6). GAD, GAL4 activation domain.
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age, PARP catalyzes the formation of poly-
(ADP-ribose) onto a protein acceptor using nic-
otinamide adenine dinucleotide (NAD1) as a
substrate (9). The catalytic domain of PARP
consists of secondary structure units (multiple b
strands and one a helix) (Fig. 2C) that form a
cavity known as the NAD1-binding fold, a
tertiary structure that is also present in all ADP-
ribosylating toxins (12). Tankyrase has 28 to
30% amino acid identity with the catalytic
domains of human and Drosophila PARP
(Fig. 2C), including all critical amino acids
implicated in NAD1 binding and catalysis.
Other conserved aspects of the previously
defined PARPs such as their automodifica-
tion and DNA binding domains (9) are not
represented in tankyrase, indicating that

tankyrase is not just a PARP isoform but a
substantially different protein.

Northern (RNA) blot analysis revealed that
multiple tankyrase mRNAs (13) were ubiqui-
tously expressed in human tissues, with the
highest amounts detectable in testis (Fig. 3A).
TRF1 and TRF2 transcripts show a similar
ubiquitous expression pattern (1, 2). A single
protein of ;142 kD was detected by tankyrase
immunoblot analysis of HeLa cells and rat tes-
tis, and this protein comigrated with the in vitro
translation product of tankyrase cDNA (Fig.
3B) (14). A survey of mammalian cell lines
suggested that tankyrase protein is ubiquitously
expressed (15), consistent with the RNA data.

Because TRF1 is predominantly associated
with telomeres in human cells, including the

telomeres of mitotic chromosomes, we used
indirect immunofluorescence analysis of meta-
phase chromosomes to determine whether
TRF1 positions tankyrase at chromosome ends.
Metaphase spreads were dually probed with
anti-tankyrase and antiserum to TRF1 (16). The
results revealed that, like TRF1, tankyrase is
located at or near the physical ends of meta-
phase chromosomes (Fig. 3C). Most of the
tankyrase protein colocalized with TRF1, as
evidenced by the merge of the two signals.
These data suggest that tankyrase is a compo-
nent of the human telomeric complex.

To investigate whether tankyrase has PARP
activity, we tested baculovirus-derived recom-
binant protein in an assay that measures the
addition of radiolabeled ADP-ribose to protein

Fig. 2. Conserved domains in tankyrase. (A) Predicted amino acid sequence of tankyrase
with an alignment of the 24 ANK repeats. Dashes indicate gaps, and sequences to the right
indicate insertions that occur after the underlined amino acid in each line. Light shading
indicates a match to the ANK repeat consensus, and darker shading is a match to the
ankyrin-specific ANK repeat consensus (8). The SAM motif is doubly underlined, and the
PARP domain singly underlined. (B) Alignment of the SAM motifs of human tankyrase
(GenBank number AF082556), Drosophila Bicaudal-C (U15928), human diacyl glycerol
kinase delta (D73409), and chicken embryo kinase 9 (U23783). (C) Alignment of the
PARP-related domain of human tankyrase with a Drosophila expressed sequence tag (EST)
LD10141(AA391467), the catalytic domain of human PARP (M32721), Drosophila PARP

(D13806), and a PARP-related domain in a human EST KIAA0177 (D79999). The secondary structures underlined are based on the published crystal
structure of chicken PARP. b Strands are indicated with c, d, e, f, g, m, and n. L denotes a conserved a helix. Asterisks indicate positions conserved in
the prokaryotic ADP-ribosyltransferases, exotoxin A from Pseudomonas aeruginosa, and diphtheria toxin (12).
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Fig. 3. Expression and localization of tankyrase. (A) Northern blot of
polyadenylated RNAs from human tissues (Clontech) probed with a
tankyrase cDNA (TR1L-4) (13). Asterisks indicate tankyrase tran-
scripts. The blot was rehybridized with a b-actin probe, and a double
exposure of both signals is shown. Molecular size markers are indi-
cated on the left in kilobases. (B) Immunoblot of the following protein
samples: salt-extracted nuclear pellet from rat testis (Testis), whole-
cell lysates from HeLa cells (HeLa), and products of a coupled in vitro

transcription-translation (IVTL) of full-length tankyrase cDNA, probed
with the indicated antibodies (14). Molecular size markers are indi-
cated on the left in kilodaltons. (C) Colocalization of tankyrase and
TRF1 at telomeres. Indirect immunofluorescence analysis of swollen,
formaldehyde-fixed metaphase spreads from HeLa cells stained with
anti-tankyrase (green) and anti-TRF1 (red) (16). “Merge” represents
superimposition of the red and green images. DAPI staining of DNA is
shown in blue. Scale bar, 5 mm.
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acceptors with [32P]NAD1 used as a substrate
(17). Incubation of tankyrase in the presence of
1.3 mM radiolabeled NAD1 produced 32P-la-
beled species that comigrated with tankyrase,
suggesting that tankyrase has the ability to
ADP-ribosylate itself (Fig. 4A). Higher concen-
trations of NAD1 (0.04 to 1 mM) yielded much
larger products, likely reflecting the addition of
poly(ADP-ribose) to tankyrase. The generation
of ADP-ribosylated tankyrase depended on the
concentration of tankyrase (Fig. 4A), was elim-
inated by heat inactivation of the enzyme, and
could be immunoprecipitated with anti-
tankyrase (Fig. 4B) (18), indicating that the
PARP activity was intrinsic to tankyrase.

Tankyrase also has the ability to modify
TRF1. At low NAD1 concentration (1.3 mM),
the ADP-ribosylated products comigrated with
TRF1, whereas at higher NAD1 concentrations
(0.04 to 1 mM), the slower and variable mobil-
ity of the labeled products suggested poly-
(ADP-ribosyl)ation of TRF1 (Fig. 4A). Inspec-
tion of Coomassie blue–stained SDS gels did
not reveal a larger molecular weight species

upon tankyrase-mediated TRF1 modification,
indicating that only a small fraction of the
TRF1 in the reactions was modified even at
high tankyrase concentrations. Thus, tankyrase
is likely to function as a processive PARP under
these conditions. TRF2 is not a substrate for
modification in vitro, as expected from the lack
of protein-protein interaction between TRF2
and tankyrase.

To confirm that the labeling reaction with
tankyrase was analogous to PARP-catalyzed
poly(ADP-ribosyl)ation, we added the specif-
ic PARP inhibitor 3-aminobenzamide (3AB)
to the reactions (19). Modification of both
TRF1 and tankyrase was strongly inhibited
by 3AB (Fig. 4C). Furthermore, modified
tankyrase and TRF1 reacted with a monoclo-
nal antibody to poly(ADP-ribose) (Fig. 4D)
(17), consistent with their carrying ADP-
ribose polymers. These data indicate that
tankyrase is a genuine PARP with at least two
specific substrates, TRF1 and tankyrase itself.

The effect of tankyrase on the telomeric
DNA binding activity of TRF1 was determined

by an in vitro gel-shift assay with the use of a
double-stranded array of [TTAGGG]12 as a
probe (20). TRF1 binds to DNA as a ho-
modimer, and several such dimers can occupy
one [TTAGGG]12 molecule at high TRF1 con-
centrations (6) (Fig. 4E). When TRF1 was in-
cubated with baculovirus-derived tankyrase in
the absence of NAD1, a slight stimulation of
the TRF1 DNA binding activity occurred, re-
sulting in the formation of higher order com-
plexes, especially at high tankyrase concentra-
tions. However, this stimulation of TRF1 also
occurred with total insect cell protein and was
therefore unlikely to represent a specific effect
of tankyrase. A similar nonspecific enhance-
ment of TRF1 was previously reported for
b-casein and several other proteins (1). In con-
trast, when NAD1 was included in the TRF1-
tankyrase mixtures, a reduction of the TRF1
activity resulted (Fig. 4E). This effect was de-
pendent on the addition of active tankyrase
(Fig. 4E), consistent with ADP-ribosylation be-
ing the cause of the TRF1 inhibition.

The identification of a telomeric PARP rais-
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Fig. 4. Tankyrase is a PARP
that inhibits TRF1 in vitro.
(A) Tankyrase ADP-ribosy-
lates itself and TRF1.
Tankyrase was allowed to
modify itself and TRF1 in
the presence of [32P]NAD1,
and the products were an-
alyzed by Coomassie blue
staining (left) and autora-
diography (right) of SDS-
PAGE gels (17). Reactions
contained the proteins in-
dicated above the lanes
at the following amounts:
TRF1 at 4 mg (1) and
tankyrase at 4 mg (1) or
at a range of 0, 0.8, and
4 mg (triangle). All reac-
tions contained 1.3 mM
[32P]NAD1 (1), and three
reactions were also sup-
plemented with increasing
amounts of unlabeled
NAD1 (0.04, 0.2, and 1
mM, triangle). (B) ADP-ri-
bosylation activity is in-
trinsic to tankyrase.
Tankyrase was immuno-
precipitated with preim-
mune serum or anti-
tankyrase (a-Tankyrase)
as indicated and incubated
in a PARP assay with [32P]NAD1. The products were detected by autoradiography
(18). (C) Tankyrase is inhibited by the PARP inhibitor 3AB. Reactions containing 4 mg
of tankyrase (1), without (2) or with (1) 4 mg of TRF1, and 1.3 mM [32P]NAD1 were
incubated without (2) or with (1) 1 mM 3AB and processed as in (A). (D) Tankyrase
products contain poly(ADP-ribose). Tankyrase and TRF1 were added as in (C).
Reactions for the left panel contained no NAD1 (2) or 1.3 mM [32P]NAD1 supple-
mented with 1 mM or 1 mM unlabeled NAD1 (triangle). Reactions for the right panel
were identical to the reactions on the left but lacked labeled NAD1. Products were transferred to nitrocellulose and analyzed by autoradiography (left) or
immunoblotted with monoclonal antibody 10H to poly(ADP-ribose) (17) (right). (E) Tankyrase inhibition of TRF1. A gel-shift assay for the TTAGGG
repeat–binding activity of TRF1 was performed with a duplex [TTAGGG]12 DNA as a probe. Binding reactions contained the components indicated above the
lanes. Tankyrase concentration was varied from 200 to 2.5 ng per 20-ml incubation in threefold dilution steps (triangle). TRF1 was either present at 13 ng
(1) or varied from 120 to 13 ng in threefold dilution steps (triangle). NAD1 was at absent (2) or present at 0.2 mM (1). The asterisks indicate the position
of TRF1-containing complexes as determined by antibody super-shift experiments.
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es the possibility that the function of human
telomeres is regulated by this type of protein
modification. Because ADP-ribosylation usual-
ly inhibits protein activity (21), we favor the
view that tankyrase is a negative regulator of
another factor acting at telomeres. Although the
in vivo targets of tankyrase remain to be estab-
lished, TRF1 is a strong candidate, because it is
a substrate for tankyrase in vitro and ADP-
ribosylation inhibits the ability of TRF1 to bind
to telomeric DNA. However, the PARP activity
of tankyrase could also be directed at other
telomere-associated factors, including telomer-
ase, and ADP-ribosylation might enhance rath-
er than inhibit the activity of the target protein
(22). In vivo functional analysis will be re-
quired to determine whether tankyrase acts pos-
itively or negatively in the regulation of telo-
mere length. PARPs have previously been im-
plicated in the cellular response to DNA dam-
age (9). The presence of a PARP activity at
telomeres may also hint at a role for tankyrase
in the protection of telomeres from inappropri-
ate DNA damage processing activities.
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