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Introduction

Telomere biology and DNA repair: Enemies with benefits

This special issue features in-depth reviews of telomere biology
and DNA repair. Understanding how telomeres function requires
insights into the nature and regulation of the cellular pathways
that detect and repair DNA lesions. As telomeres block unwar-
ranted DNA repair reactions and avoid detection by the DNA dam-
age signaling pathways, detailed knowledge of the earliest steps in
the relevant DNA damage response pathways can point to the pos-
sible regulatory nodes where telomeres interfere with these pro-
cesses. Furthermore, telomeres have co-opted some of the
complexes involved in the DNA damage response, presumably to
serve specific protective roles or facilitate the maintenance of the
telomeric DNA. Conversely, studies of dysfunctional telomeres
have shed new light on the regulation and nature of the cellular
DNA damage response, illuminating specific attributes of the path-
ways that are not readily apparent from the analysis of genome-
wide DNA damage. This cross-fertilization between the two fields
is reminiscent of how immunologists have furthered the under-
standing of pathogens and, vice versa, how virologists and micro-
biologists have provided insights into the host defense system. It
is anticipated that efforts like this special issue will foster a contin-
ued interdisciplinary synergy between the DNA repair and telo-
mere biology fields.

Know your enemy

The telomere field initially focused on the end-replication prob-
lem and its solutions, leading to the discovery of telomerase, its
regulation, and its relevance to human disease. Little attention
was paid to the rapid advances in the area of DNA damage signal-
ing and repair. Early views of how telomeres might block DNA re-
pair reactions invoked specialized terminal DNA structures
(hairpins, G4 DNA) or tenacious protein caps that effectively served
as the oft-quoted aglets on shoelaces. Not only were these models
inadequate, they ignored the very nature of the enemy telomeres
must defend against.

The DNA damage response is not a single enemy with just one
weapon that can harm chromosome ends. First, there are two dis-
tinct DNA damage detection pathways that could potentially be
activated by the natural ends of chromosomes. The ATM kinase
pathway (often equated with Tel1 in budding and fission yeast) re-
sponds to double-stranded breaks (DSBs) through a poorly under-
stood process in which the Mre11/Rad50/Nbs1 (Xrs2 in yeast)
complex (also referred to as MRN or MRX depending on the organ-
ism) binds to DNA ends and activates the ATM kinase in conjunc-
tion with the Tip60 HAT [1,2]. In addition, telomeres in some
organisms, notably vertebrates, contain sufficient single-stranded
(ss) DNA to activate the ATR kinase (equated with Mec1 in budding
yeast and Rad3 in fission yeast). The ATR kinase pathway relies on
the abundant ss DNA binding protein RPA to recognize and associ-

ate with ss DNA [1,3]. The activation of ATR signaling involves
additional contributions of the Rad9-Rad1-Hus1 clamp (9-1-1)
and its clamp loader Rad17 as well as ATRIP and TopBP1. Thus,
the silencing of the ATM and ATR kinase pathways is unlikely to
rely on a single telomere trick. It has been proposed that shelterin,
the vertebrate telomeric protein complex, hides the chromosome
end from the ATM kinase pathway by remodeling telomeres into
a closed structure, the t-loop [4,5]. In the t-loop, MRN is unlikely
to recognize the telomere terminus as a DNA end, thus preventing
the activation of the ATM kinase. On the other hand, ATR signaling
is blocked by the POT1 component of shelterin. POT1 binds to sin-
gle-stranded telomeric DNA and was proposed to exclude RPA
from gaining access to the telomere [5,6].

Second, the DNA repair reactions that threaten telomeres are
varied in nature. DSBs are processed by either homology-directed
repair (HDR) or non-homologous end-joining (NHE]) [7-12]. These
two pathways engage DNA ends in a mutually exclusive fashion
and, like the ATM and ATR signaling pathways, are initiated in cru-
cially distinct ways. NHE] employs the ring-shaped Ku70/80 hetero-
dimer, which loads onto DNA ends and facilitates their synapsis and
ligation by DNA ligase IV. The vertebrate t-loop structure was in-
voked as a protective measure against ATM signaling is probably
also an effective way to block Ku70/80 and thus could thwart NHE]
in its earliest steps [5]. However, in budding yeast, Rap1 is the main
protector against NHE] [13] and while the mechanism by which
Rap1 acts is not understood, it is unlikely to involve a t-loop struc-
ture. Even in mammals, additional mechanisms, not involving the
t-loop, are required to protect telomeres from NHE] right after
DNA replication.

HDR is initiated when Rad51 replaces RPA on single-stranded
DNA and it might be sufficient to repress RPA binding to avoid
inappropriate HDR at telomeres. However, it is likely that addi-
tional mechanisms are employed by telomeres. Although some of
the players in the repression of HDR are now known (at least for
mammalian telomeres, e.g. the Rapl and POT1 components of
shelterin [14,15]), the mechanism of their intervention has not
been elucidated.

Keep your friends close and keep your enemies closer

All eukaryotes employ telomere specific proteins to repress the
DNA damage response at their natural chromosome ends. In verte-
brates and in fission yeast, these proteins form the shelterin com-
plex [5,16] whereas plants, budding yeast, ciliates, and worms have
a different armament for their defense. Initially surprising was the
discovery of well-established DNA damage response proteins as
residents in the telomeric chromatin. This was first demonstrated
in yeast where the NHE] factor Ku is required for the maintenance
of telomeres [17-22]. It is now clear that telomeres in several
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organisms are associated with proteins that are well known to act
in DNA repair reactions, DNA damage signaling, and other DNA
transactions.

In mammals, these factors are often recruited to telomeres by
shelterin and are therefore referred to as shelterin accessory fac-
tors [16]. Although the shelterin accessory factors are not as abun-
dant as shelterin and are often only transiently present at
telomeres, their role in telomere biology is crucial. The challenge
ahead is to understand how telomeres have managed to tame
these potentially threatening protein complexes to only undertake
actions that are advantageous to telomeres. It is in this analysis
that the true synergy between the fields of telomere biology and
DNA repair is most eagerly anticipated.
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